Project description
Advanced molecular spectroscopy for nanostructured material systems
Exploiting the different ways that different types of matter interact with electromagnetic radiation, spectroscopy has been indispensable to the detection, identification and quantification of the molecular or structural composition of a sample. Spectroscopic methods have advanced significantly, and now computational methods are augmenting the capabilities of hardware to isolate molecules or molecular systems in solutions. However, such methods are currently not applicable to the characterisation of industrially and economically important complex nanostructured systems of solids such as graphene or metal nanoparticles. The EU-funded GEMS project is filling this important gap and ensuring compatibility with commonly used computational chemistry software for maximum impact.
Objective
Recently, there has been a paradigmatic shift in experimental molecular spectroscopy, with new methods focusing on the study of molecules embedded within complex supramolecular/nanostructured aggregates. In the past, molecular spectroscopy has benefitted from the synergistic developments of accurate and cost-effective computational protocols for the simulation of a wide variety of spectroscopies. These methods, however, have been limited to isolated molecules or systems in solution, therefore are inadequate to describe the spectroscopy of complex nanostructured systems. The aim of GEMS is to bridge this gap, and to provide a coherent theoretical description and cost-effective computational tools for the simulation of spectra of molecules interacting with metal nano-particles, metal nanoaggregates and graphene sheets.
To this end, I will develop a novel frequency-dependent multilayer Quantum Mechanical (QM)/Molecular Mechanics (MM) embedding approach, general enough to be extendable to spectroscopic signals by using the machinery of quantum chemistry and able to treat any kind of plasmonic external environment by resorting to the same theoretical framework, but introducing its specificities through an accurate modelling and parametrization of the classical portion. The model will be interfaced with widely used computational chemistry software packages, so to maximize its use by the scientific community, and especially by non-specialists.
As pilot applications, GEMS will study the Surface-Enhanced Raman (SERS) spectra of systems that have found applications in the biosensor field, SERS of organic molecules in subnanometre junctions, enhanced infrared (IR) spectra of oligopeptides adsorbed on graphene, Graphene Enhanced Raman Scattering (GERS) of organic dyes, and the transmission of stereochemical response from a chiral analyte to an achiral molecule in the vicinity of a plasmon resonance of an achiral metallic nanostructure, as measured by Raman Optical Activity-ROA
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- natural sciences computer and information sciences software
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
56126 PISA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.