Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Supramolecular machineries with life-like mechanical functions

Descripción del proyecto

Sentar las bases del campo de las máquinas supramoleculares

Las nuevas arquitecturas de interruptores moleculares llevan a niveles más altos a las máquinas moleculares artificiales inspiradas en la naturaleza que imitan a los agentes básicos del movimiento de los organismos vivos. Estas permitirán a los científicos agregar posibilidades impredecibles y nuevas funciones a dichas máquinas moleculares artificiales. Con todo, todavía se necesita una cadena de interacciones moleculares bien diseñada para traducir el movimiento a nivel molecular (generalmente inducido a escala subnanométrica) en efectos cuantificables y funcionales a micro y macroescala. Para lograrlo, en el proyecto MechanoTubes, financiado con fondos europeos, se emplearán los principios funcionales de los microtúbulos para incorporar fotointerruptores moleculares en tubos supramoleculares y favorecer el crecimiento y desmontaje controlados de los tubos utilizando la luz como estímulo energético. Este proyecto sentará las bases del campo de las máquinas supramoleculares que funcionarán a nanoescala y más allá.

Objetivo

Artificial molecular motors and switches have the potential to become a core part of nanotechnology. However, a wide gap in length scales still remains unaccounted for, between the operation of these molecules in solution, where their individual mechanical action is randomly dispersed in the Brownian storm, and on the other hand their action at the macroscopic level, e.g. in polymer networks and crystals.

This proposal is about bridging this gap, by developing chemo-mechanical transduction strategies that will allow dynamic molecules to perform a range of unprecedented tasks, e.g. by generating strong directional forces at the nanoscale, and through shape-shifting microscopic formations.

This project aims to harness the mechanically-purposeful motion of dynamic molecules as to generate measurable forces from the nanoscale, and ultimately establish operational principles for chemo-mechanical transduction in supramolecular systems.

In my wholly synthetic approach, I draw inspiration from the operational principles of microtubules. I will incorporate molecular photo-switches into supramolecular tubes, and enable the controlled growth and disassembly of the tubes by using light as the energy input. Thus, I will: (i) Synthesize stiff supramolecular tubes that grow actively under continuous illumination, and disassemble with a power stroke as soon as illumination stops; (ii) Measure, and harvest the forces generated by the tubes to manipulate individual nanoparticles with a sense of directionality; and (iii) Encapsulate the tubes into water droplets and vesicles, to yield shape-shifting, and eventually rudimentary splitting models for cells.

This project reaches beyond the state of the art in adaptive molecular nano-systems, by pioneering strategies to engineer and harness strain in supramolecular assemblies. It thus lays the foundations for machineries that are capable of manipulating matter at length scales that are also those at which the cytoskeleton operates.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

RIJKSUNIVERSITEIT GRONINGEN
Aportación neta de la UEn
€ 1 752 767,50
Dirección
Broerstraat 5
9712CP Groningen
Países Bajos

Ver en el mapa

Región
Noord-Nederland Groningen Overig Groningen
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 752 767,50

Beneficiarios (2)