Skip to main content

Ultrahigh-speed nanometer-scale microscopy

Objective

Ultrahigh-speed microscopy at Tera-scale frames per second frame-rate is essential for various applications in science and technology. In particular, it is critical for observing ultrafast non-repetitive events, for which the pump-probe technique is inapplicable. The spatial resolutions of such microscopes is to date limited to the micrometer scale.

I propose to develop such microscopes with nanometric resolution.
The Tera-scale frames per second frame rate microscopes with nanometric resolution will be based on a new approach for ultrahigh-speed imaging that we recently proposed: time-resolved imaging by multiplexed ptychography (TIMP). In TIMP, multiple frames of the object are recovered algorithmically from data measured in a single CCD exposure of a single-shot ptychographic microscope. The frame rate is determined by the light source (burst of pulses) and it is largely uncoupled from the microscope spatial resolution, which can be sub-wavelength. Also important, TIMP yields movies of both the amplitude and phase dynamics of the imaged object. It is simple and versatile, thus it can be implemented across the electromagnetic spectrum, as well as with other waves.

I aim to develop TIMP-based microscopes, in the visible, extreme UV and x-ray spectral regions with Tera-scale frames per second frame rate and nanometric resolution. We will utilize the unprecedented imaging capabilities in applications, including exploring ultrafast phase transitions, ultrafast dynamics in nanostructures, and tracking the spatiotemporal dynamics during passive mode-locking build-up in lasers and Kerr micro-resonators.

This program, if successful, will bring the field of imaging into a new era, where ultrafast dynamics of non-repetitive transient complex-valued objects can be viewed at nanometric resolution.

Field of science

  • /humanities/arts/modern and contemporary art/film
  • /natural sciences/physical sciences/optics/laser physics

Call for proposal

ERC-2018-COG
See other projects for this call

Funding Scheme

ERC-COG - Consolidator Grant

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Address
Senate Building Technion City
32000 Haifa
Israel
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 2 381 700

Beneficiaries (1)

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Israel
EU contribution
€ 2 381 700
Address
Senate Building Technion City
32000 Haifa
Activity type
Higher or Secondary Education Establishments