Project description
Like magic, a 'movie' from a single snapshot brings precision down to the nanoscale
Getting a better handle on phenomena ranging from biological interactions to the behaviours of materials in the quantum regime relies on extremely high precision measurements in both time and space. This is even more true with non-repetitive events, for which capturing multiple frames and averaging is not possible. The EU-funded TIMP project is developing advanced microscopy to bring nanometre resolution to ultrafast, non-repetitive and transient phenomena. The technology harnesses an innovative time-resolved imaging technique enabling the algorithmic recovery of multiple frames from a single camera snapshot, producing "movies" of the imaged object with nanoscale precision.
Objective
Ultrahigh-speed microscopy at Tera-scale frames per second frame-rate is essential for various applications in science and technology. In particular, it is critical for observing ultrafast non-repetitive events, for which the pump-probe technique is inapplicable. The spatial resolutions of such microscopes is to date limited to the micrometer scale.
I propose to develop such microscopes with nanometric resolution.
The Tera-scale frames per second frame rate microscopes with nanometric resolution will be based on a new approach for ultrahigh-speed imaging that we recently proposed: time-resolved imaging by multiplexed ptychography (TIMP). In TIMP, multiple frames of the object are recovered algorithmically from data measured in a single CCD exposure of a single-shot ptychographic microscope. The frame rate is determined by the light source (burst of pulses) and it is largely uncoupled from the microscope spatial resolution, which can be sub-wavelength. Also important, TIMP yields movies of both the amplitude and phase dynamics of the imaged object. It is simple and versatile, thus it can be implemented across the electromagnetic spectrum, as well as with other waves.
I aim to develop TIMP-based microscopes, in the visible, extreme UV and x-ray spectral regions with Tera-scale frames per second frame rate and nanometric resolution. We will utilize the unprecedented imaging capabilities in applications, including exploring ultrafast phase transitions, ultrafast dynamics in nanostructures, and tracking the spatiotemporal dynamics during passive mode-locking build-up in lasers and Kerr micro-resonators.
This program, if successful, will bring the field of imaging into a new era, where ultrafast dynamics of non-repetitive transient complex-valued objects can be viewed at nanometric resolution.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- humanities arts modern and contemporary art cinematography
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.