Project description
Cost-optimised quantum technologies
To ensure the success of the second quantum revolution (which offers exciting new applications like faster computers), all devices will be required to have the same level of integration that microelectronic systems have achieved. In this context, the EU-funded UNIQORN project will develop new applications and new protocols for real-life applications. It will develop cost-optimised quantum technology – the first step to quantum devices for the mass market. These devices will be based on small, cheap, robust and reliable systems. Specifically, the project will extend the existing photonic integration technology to accommodate quantum applications. The outcome of the project will provide the building blocks for quantum devices that can be used in home appliances and even smartphones one day.
Objective
Quantum communication is recognised as one of the pillars for the second quantum revolution thanks to its unique potential for information-theoretical data security. Turning this promise into tangible assets depends however, on the availability of high-performance, compact and cost-effective modules for practical implementations. UNIQORN is a well-orchestrated design and manufacturing framework aiming to advance the quantum communication technology for DV and CV systems by carefully laying out each element along the development chain from fabrication to application. Component-wise, UNIQORN will leverage the monolithic integration potential of InP platform, the flexibility of polymer platform and low-cost assembly techniques to develop quantum system-on-chip modules in a cheap, scalable and reproducible way. UNIQORN will deliver bright (10M pairs/s/mW/THz) heralded, entangled and squeezed light sources with 70-fold size reduction and almost 90% cost savings, room-temperature arrayed SPADs and a 10-GHz CV receiver with low-noise TIAs. Fully functional systems based on these assets will include: (i) a network adapter card with integrated real-time QRNG engine, (ii) the first DPS transmitter as pluggable SFP module for low-cost 1-kb/s QKD, and (iii) novel oblivious transfer and quantum FPGA systems. Network-integration and system evaluation in real fibre networks will be enabled by quantum-aware software defined networking and field trials in the live Smart-City demonstrator Bristol-is-Open. The power of the developed ecosystem will be also validated by pushing current QKD-centric work into higher grounds, and demonstrating one-time programs and secure database access through oblivious transfer. The trans-disciplinary approach of UNIQORN brings together leading European players from quantum optics and photonics enabling to move from lab science to field deployment and bridge the quantum divide between large (governmental) and small (residential) end-users.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Keywords
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
1210 Wien
Austria