Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Ultracoherent force sensors

Project description

En route to tiny, ultra-coherent, soft force sensors

The EU-funded ULTRAFORS project plans to develop a novel type of ‘soft-clamped’ mechanical resonator. With unprecedented quality factors and low force noise, these resonators should provide a valuable platform for use in quantum technologies, materials science and nanomedicine. Project activities will mainly focus on developing designs optimised for force sensors and stabilising the nanofabrication process to improve production reliability and cost. Furthermore, researchers will develop a business case for ultra-coherent force sensors that will lay the foundations for launching a start-up in the field.

Objective

As part of our ERC-funded quest for quantum-enabled micro- and nanomechanical resonators, we have developed a novel type of ‘soft-clamped’ mechanical sensors. They combine phononic engineering via periodic patterning with high tensile stress. With unprecedented quality factors and low force noise, they provide a powerful platform for an array of force sensing techniques. Applications are expected not only in quantum technologies, but also materials science and nano-medicine, by improving nano-scale force imaging modalities such as magnetic resonance force microscopy. Importantly, reduced dissipation can render costly and complex cryogenic cooling obsolete in many of these applications. In this proof-of-concept project, we will (i) develop designs optimized for force sensitivity, guided by simulation tools already developed, (ii) stabilize the nanofabrication process to improve reliability and economy of the production (iii) further pursue and expand ownership of IPR, to form the basis of commercial exploitation, and (iv) develop a business case for ultracoherent force sensors. This will lay the foundation to the launch of start-up company, or joint commercial activity with existing suppliers, to commercially provide ultracoherent force sensors.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-PoC

See all projects funded under this call

Host institution

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 150 000,00

Beneficiaries (1)

My booklet 0 0