Project description DEENESFRITPL High-efficiency nanodevice bridges the terahertz gap The generation, manipulation and detection of electromagnetic waves across the entire frequency spectrum underpin many of the advances in sensing, imaging, spectroscopy and data processing applications. The last century has witnessed an impressive evolution in devices operating at frequencies either below 0.1 THz or above 50 THz. However, there is a lack of compact systems that work well across the terahertz range, which is why it is often referred to as the ‘terahertz gap’: a band of frequencies in the 0.3-30 THz region. The EU-funded THOR project plans to demonstrate the first fast, low-noise and cost-effective nanodetector working at room temperature in the 1-30 THz range. The project will build on the latest scientific breakthroughs in the molecular cavity optomechanics. Show the project objective Hide the project objective Objective The generation, manipulation and detection of electromagnetic waves across the entire frequency spectrum is the cornerstone of modern technologies, underpinning wide disciplines across sensing, imaging, spectroscopy and data processing, amongst others. Whilst the last century has witnessed an impressive evolution in devices operating at frequencies either below 0.1 THz (microwave and antenna technology) or above 50 THz (near-infrared and visible optical technology), in between the lack of suitable materials and structures for efficient electromagnetic manipulation has resulted in the so-called “THz gap” : a band of frequencies in the 0.3 – 30 THz region of the spectrum for which compact and cost-effective sources and detectors do not exist – even though their application has enormous potential in medical diagnostics, security, astronomy, and wireless communication.In this project, we will demonstrate the first nano-scale, cost-effective, fast and low-noise detector working at room temperature in the 1 – 30 THz range by developing a radically new concept of signal up-conversion to visible/near-infrared (VIS/NIR) radiation, leveraging the latest scientific breakthroughs in the new scientific field of molecular cavity optomechanics. In particular, we will design and synthesize molecules with both large IR and Raman vibrational activity in that THz range to be integrated into plasmonic nano- and pico-cavities so that their vibration mediates the coherent transfer of energy from the THz to the laser signal driving the cavity. In our approach, we will also employ THz antennas to improve the coupling efficiency of the THz field to the molecules. This bold vision, which builds on the fundamentals of light-matter interaction (science) and converges toward the on-chip integration in a silicon-compatible chip (technology), completely surpasses any previous technological paradigms related to the measurement of THz molecular vibration as well as its possible manipulation. Fields of science natural sciencesphysical sciencesopticscavity optomechanicsnatural sciencesphysical sciencesastronomynatural sciencescomputer and information sciencesdata sciencedata processingnatural sciencesphysical sciencesopticslaser physicsnatural sciencesphysical sciencesopticsspectroscopy Keywords cavity optomechanics quantum chemistry THz technology Programme(s) H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET) Main Programme H2020-EU.1.2.1. - FET Open Topic(s) FETOPEN-01-2018-2019-2020 - FET-Open Challenging Current Thinking Call for proposal H2020-FETOPEN-2018-2020 See other projects for this call Sub call H2020-FETOPEN-2018-2019-2020-01 Funding Scheme RIA - Research and Innovation action Coordinator UNIVERSITAT POLITECNICA DE VALENCIA Net EU contribution € 551 162,50 Address Camino de vera sn edificio 3a 46022 Valencia Spain See on map Region Este Comunitat Valenciana Valencia/València Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Participants (7) Sort alphabetically Sort by Net EU contribution Expand all Collapse all STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN Netherlands Net EU contribution € 498 437,50 Address Winthontlaan 2 3526 KV Utrecht See on map Region West-Nederland Utrecht Utrecht Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 KING'S COLLEGE LONDON Participation ended United Kingdom Net EU contribution € 99 653,79 Address Strand WC2R 2LS London See on map Region London Inner London — West Westminster Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE United Kingdom Net EU contribution € 598 587,50 Address Trinity lane the old schools CB2 1TN Cambridge See on map Region East of England East Anglia Cambridgeshire CC Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS Spain Net EU contribution € 327 353,75 Address Calle serrano 117 28006 Madrid See on map Region Comunidad de Madrid Comunidad de Madrid Madrid Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE Switzerland Net EU contribution € 624 000,00 Address Batiment ce 3316 station 1 1015 Lausanne See on map Region Schweiz/Suisse/Svizzera Région lémanique Vaud Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 LYTID France Net EU contribution € 342 550,00 Address 6 boulevard dubreuil 91400 Orsay See on map SME The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed. Yes Region Ile-de-France Ile-de-France Essonne Activity type Private for-profit entities (excluding Higher or Secondary Education Establishments) Links Contact the organisation Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 UNIVERSITY COLLEGE LONDON United Kingdom Net EU contribution € 232 377,46 Address Gower street WC1E 6BT London See on map Region London Inner London — West Camden and City of London Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00