Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Rational Design of Ceria-Supported Non-Noble Metal Nanoalloys as Catalysts for the Selective Direct Conversion of Methane to Methanol

Descripción del proyecto

Una mejor conversión del metano en metanol beneficia a la industria, la sociedad y el medio ambiente

El metano (CH4) es el principal componente del gas natural y se emite durante actividades humanas y procesos naturales. Aunque representa un porcentaje relativamente pequeño de las emisiones mundiales, sus efectos son muy potentes, porque su capacidad de capturar el calor es varias decenas de veces superior a la del CO2. La conversión de CH4 en metanol es un modo excelente tanto de reducir los niveles atmosféricos como de producir una materia prima y un combustible esenciales, pero sigue siendo un gran desafío y un importante ámbito de investigación a causa de la fuerza de los enlaces carbono-hidrógeno, así como de los subproductos que libera. El proyecto financiado con fondos europeos 4lessCH4 desarrollará catalizadores innovadores para una conversión eficiente y selectiva del CH4 en metanol con un impacto importante sobre la mitigación del cambio climático.

Objetivo

Methane (CH4) is a potent greenhouse gas that can come from many sources, both natural and manmade. The low temperature direct route to converting methane to methanol (CH3OH) a key feedstock for the production of chemicals that can also fuel vehicles or be reformed to produce hydrogen has long been a holy grail. The efficient use of CH4 emissions require catalysts that can activate the first C-H bond while suppressing complete dehydrogenation and avoiding CO/CO2 formation. The potential benefit of finding non-expensive and efficient catalysts for directly converting methane to methanol (DMTM), using only molecular oxygen, and perhaps water, is significant and new catalysts are being sought. This project aims to the rational design of such catalysts based on non-noble metal nanoalloys/reducible oxide systems. There are key challenges to be addressed, namely, to improve reactants activation, to obtain an understanding of the reaction mechanism and to improve selectivity. Real powder catalysts are too complex to enable us to disentagle the effect of the nature of the metallic phase (composition, structure, nanoparticle size), the role of the oxidic support and of metal-support interactions, and the role of alloying and water in controlling selectivity. The strategy here consists of creating and investigating model systems, which include essential parts of the real ones, but can still be studied at the atomic level using state-of-the-art computational methodology in chemistry. Calculations will be performed in close collaboration with experimental work employing well-defined model systems as well as powders. The synergistic power of theory and experiment is crucial to design new or improved catalysts. Theory will not only be used to explain experimental data, but also for pre-screening the behavior of catalysts. The goal is to develop basic principles for the rational design and optimization of nano-structured catalysts for mitigating greenhouse gases.

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Aportación neta de la UEn
€ 172 932,48
Dirección
CALLE SERRANO 117
28006 Madrid
España

Ver en el mapa

Región
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 172 932,48