Project description
Detecting gravitational fields with Bose-Einstein condensates
Bose-Einstein condensates – large groups of interacting atoms cooled to temperatures very close to absolute zero – are very useful for high-precision metrology. Funded by the Marie Skłodowska-Curie Action programme, the PhoQuS-G project aims to investigate whether Bose-Einstein condensates consisting of phonons could be used to sense gravitational fields with high precision. The project will build on a new powerful numerical method that describes condensate splitting, trap-release and other condensate properties. High-precision sensing of gravitational fields would offer a variety of applications, from fundamental research to technological solutions. For example, knowledge about local gravitational fields (geodesy) could prove useful for mapping underground infrastructures or finding natural resources.
Objective
Bose-Einstein condensates (BECs) are extremely cold Bose gases consisting of a large number of interacting atoms. BECs have quantum properties that can be exploited perfectly for high precision metrology. The goal of the research project Phononic Quantum Sensors for Gravity (PhoQuS-G) is an extensive analytical and numerical analysis of the use of phonons (quasi-particles of phase and density perturbations) in BECs for high precision sensing of gravitational fields. The project will be built upon a powerful numerical method employed by the host group that enables the description of condensate splitting, trap release and other (strong) changes of the BEC. This method will be combined with an elaborate description of cold Bose gases, incorporating effects of quantum noise and finite temperature and providing access to second order correlation functions of the Bose gas.
The numerical approach will enable the analysis of the most promising parameter regimes and provide a description of the full time-evolution of BECs, including probe state preparation and measurement. Measurement precision will be optimized using methods of quantum metrology. A clear pathway will be given towards first gravimetry experiments with phonons in BECs. Such experiments can lead to the development of phononic quantum sensors, a very promising quantum technology. High precision sensing of gravitational fields offers a variety of applications - from fundamental research to technological solutions; for example, knowledge about local gravitational fields (geodesy) can be used to map underground infrastructures, find natural resources or ease navigation. As BECs exist on the micrometer scale, precise measurements of gravitational fields on short distances and of very small objects can be implemented far beyond the scales explored to date. This may offer opportunities for new exciting experiments investigating the interface of quantum mechanics and gravity.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- natural sciences physical sciences atomic physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences condensed matter physics bose-einstein condensates
- natural sciences mathematics applied mathematics numerical analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10117 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.