Project description
Evolutionary trajectory of giant viruses in the cellular world
Mimivirus (Mimiviridae family) is a giant icosahedral virus visible by light microscopy, which uses amoeba as the natural host. The discovery of this and other giant viruses has raised questions about their origin and evolution. The EU-funded VIREVOL project will investigate the co-evolution of these viruses and their amoebal hosts, focusing on specific features of the virions. The study hypothesis is that a transition from the rigid icosahedral virions to the more plastic amphora-shaped particles occurred via the hijacking of the host cellulose synthesis pathway by the ancestor of these viruses. The research will also focus on rod-shaped structure and the organisation of their genome to uncover evolutionary links with the genome packaging systems in the cellular world.
Objective
The discovery of Mimivirus, the first icosahedral virus visible by light microscopy, was followed by the characterization of many other relatives. Its aquatic relative Megavirus chilensis, has a 1.2 Mb genome and encodes more than 1000 proteins, 2/3 unique to the Mimiviridae. Their infectious cycle is cytoplasmic. During the last 10 years, my laboratory discovered three other giant virus families: -the pandoraviridae, with their unique amphora-shaped 1m long virion morphologies, genome sizes reaching 3Mb and encoding thousands of proteins, most of which without homologues in the cellular or the viral world the mollivirus, which was isolated from a 30,000 years old Siberian permafrost sample, presents common features with the pandoraviruses. They share 60 unique genes and the roughly spherical (0.6m) mollivirions present an external tegument resembling the pandoravirions. Both viruses have an early nuclear phase the pithovirus, despite its amphora-shaped virions, has a fully cytoplasmic cycle. Our work raised questions on the origin of these intriguing viral families and their position in the tree of life. My project is unique as it will address the coevolution of these viruses and their amoebal hosts by focusing on specific features of the virions in two overall aims. 1) Promising preliminary results led us to hypothesize that a progressive transition from the rigid icosahedral virions to the more plastic amphora-shaped particles was made possible through hijacking of the host cellulose synthesis pathway by the ancestor of pandoraviruses. 2) The icosahedral mimivirus package its genome in a complex rod-shaped structure. My team will investigate this structure to unveil possible evolutionary links with the genome packaging systems in the cellular world. We will characterize the machinery responsible for such organization. These two high-risk/high-gain aims will continue to revisit the concept of virus and their evolutionary trajectory in the living world.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology virology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences evolutionary biology
- natural sciences physical sciences optics microscopy
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.