Descripción del proyecto
Las interacciones exóticas entre la luz y la materia mejoran el control de la cristalización
Los cristales pueden tener todo tipo de componentes. Los iónicos dan lugar a cristales de sal, los moleculares, a cristales de azúcar y, por supuesto, en laboratorios del mundo entero se cristalizan todo tipo de átomos, moléculas e incluso péptidos, entre otros. Para un resultado adecuado es fundamental controlar la nucleación que inicia el proceso de cristalización y crea un pequeño núcleo sobre el que crece el cristal. El proyecto financiado con fondos europeos CONTROL desarrollará las bases teóricas y experimentales para aprovechar pinzas ópticas y otras interacciones exóticas entre la luz y la materia para un control sin precedentes de la formación de cristales. La comercialización de la novedosa plataforma forma parte de un plan para iniciar un nuevo período de innovación impulsada por la cristalización controlada.
Objetivo
The CONTROL programme I propose here is a five-year programme of frontier research to develop a novel platform for the manipulation of phase transitions, crystal nucleation, and polymorph control based on a novel optical-tweezing technique and plasmonics. About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solution and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and little progress was made.
In a recent publication (Nat. Chem. 10, 506 (2018)), we showed that laser-induced nucleation can be understood in terms of the harnessing of concentration fluctuations near a liquid–liquid critical point using optical tweezing. This breakthrough opens the way to a research programme with risky, ambitious, and ground-breaking long-term aims: full control over crystal nucleation including chirality and polymorphism.
New optical and microscopic techniques will be developed to allow laser manipulation on a massively parallel scale and chiral nucleation using twisted light. Systematically characterising and manipulating the phase behaviour of mixtures, will allow the use of the optical-tweezing effect to effectively control the crystallisation of small molecules, peptides, proteins, and polymers. Exploiting nanostructures will allow parallelisation on a vast scale and fine control over chirality and polymorph selection through plasmonic tweezing. Even partial success in the five years of the programme will lead to fundamental new insights and technological breakthroughs. These breakthroughs will be exploited for future commercial applications towards the end of the project.
Ámbito científico
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
G12 8QQ Glasgow
Reino Unido