Project description
Unparalleled precision and the lowest energies could take us beyond the Standard Model
The Standard Model (SM) of particle physics is anything but ‘standard.’ It is our best ‘theory of everything’ to date, encompassing the particles of matter and force-carrying particles that explain the structure and interactions in our universe. The SM has known and accepted limitations, and filling in the gaps is referred to as discovering physics beyond the SM. Accessing these missing pieces of the puzzle will require investigating matter and forces under extreme conditions at the lowest energies and with the highest precision. The EU-funded FunI project is doing just that, harnessing the team’s novel ion preparation and cooling techniques for single-ion experiments of unparalleled precision.
Objective
The four fundamental interactions and their symmetries, the fundamental constants as well as the properties of elementary particles like masses and moments, determine the basic structure of the universe and are the basis for our so well tested Standard Model (SM) of physics. Performing stringent tests on these interactions and symmetries in extreme conditions at lowest energies and with highest precision by comparing e.g. the properties of particles and their counterpart, the antiparticles, will allow us to search for physics beyond the SM. Any improvement of these tests beyond their present limits will require novel experimental techniques. To this end, we propose ambitious Penning-trap based single-ion experiments and measurements of magnetic moments and atomic masses to substantially improve the to-date best limits on some of the key SM predictions. While the measurement technique in determining the eigenfrequencies of the stored particles with unprecedented precision will be identical to the technique used in the past ERC grant by the PI (MEFUCO - MEasurements of FUndamental COnstants), the novel ion preparation and cooling techniques to be developed as well as the physics questions to be addressed are completely different. The new findings will enable us to perform stringent tests of fundamental symmetries like charge-parity-time reversal symmetry (CPT theorem) with (anti)protons or of the energy-mass equivalence principle as well as tests of interactions like quantum electrodynamics in strong fields by using highly charged ions. This will enable us to set new limits on SM predictions or even to reveal their failures. To meet these challenges, advanced charge breeding and cooling techniques will make it possible for us to achieve among other advances a ten-fold improved test of E = mc2, and thus of Einstein’s special theory of relativity and the most stringent CPT test in the baryonic sector by comparing the magnetic moments of the proton and the antiproton.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.