Descripción del proyecto
Medición de fuerzas eléctricas entre moléculas biológicas y su entorno
Las cargas opuestas se atraen, mientras que las cargas iguales se repelen. Este fenómeno es bastante fácil de observar y medir mediante un sencillo experimento de física de secundaria empleando globos y electricidad estática. Sin embargo es mucho más difícil cuando se trata de moléculas biológicas cargadas en su entorno natural, el suero fisiológico, que consiste en moléculas de agua polares e iones de carga positiva. El proyecto financiado con fondos europeos BIOVIB examinará moléculas de ARN y ADN hidratadas con un detalle sin precedentes. Sus vibraciones elementales permiten estudiar directamente interacciones inter e intramoleculares. Científicos del proyecto emplearán espectroscopia de alta tecnología y campos eléctricos de terahercios aplicados externamente para dilucidar las fuerzas eléctricas que atraen o repelen las moléculas biológicas.
Objetivo
Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.
Ámbito científico
Not validated
Not validated
Palabras clave
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
12489 Berlin
Alemania