Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Directions in Development

Project description

Cell polarity and division orientation in development

Cells are organised along body and tissue axes in multicellular organisms. Only a few polarly localised proteins are known in plants, and molecular mechanisms of polarity establishment or division orientation are elusive. The EU-funded DIRNDL project capitalises on the previously developed Arabidopsis embryo model to study cell polarity and division orientation. Recent efforts identified a novel family of deeply conserved polar plant proteins that share a structural domain with key animal polarity regulators. The researchers will analyse the genetics and functions of the polar proteins and regulators in Arabidopsis and liverwort Marchantia to identify conserved components. The final goal is to establish a cell-based system for de novo polarity engineering, using the regulators identified in the project.

Objective

Cells in multicellular organisms organise along body and tissue axes. Cellular processes, such as division plane orientation, must be aligned with these polarity axes to generate functional 3-dimensional morphology, particularly in plants, where cell walls prevent cell migration. While some polarly localized plant proteins are known, molecular mechanisms of polarity establishment or its translation to division orientation are elusive, in part because regulators in animals and fungi appear to be missing from plant genomes. Cell polarity is first established in the embryo, but this has long been an intractable experimental model. My team has developed the genetic, cell biological and biochemical tools that now render the early Arabidopsis embryo an exquisite model for studying cell polarity and oriented division. Recent efforts already led to the unexpected identification of a novel family of deeply conserved polar plant proteins that share a structural domain with key animal polarity regulators. In the DIRNDL project, we will capitalize upon our unique position and foundational results, and use complementary approaches to discover the plant cell polarity and division orientation system. Firstly, we will address the function of the newly identified conserved polarity proteins, and determine mechanistic convergence of polarity regulators across multicellular kingdoms. Furthermore, we will use proteomic approaches to systematically identify polar proteins, and a genetic approach to identify regulators of polarity and division orientation, essential for embryogenesis. We will functionally analyse polar proteins and regulators both in Arabidopsis and the liverwort Marchantia to help prioritize conserved components, and to facilitate genetic analysis of protein function. Finally, we will use a cell-based system for engineering polarity de novo using the regulators identified in the project, and thus reveal the mechanisms that provide direction in plant development.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

WAGENINGEN UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
DROEVENDAALSESTEEG 4
6708 PB Wageningen
Netherlands

See on map

Region
Oost-Nederland Gelderland Veluwe
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0