Project description
Probing the macroscopic behaviour of many-body quantum systems
Understanding how macroscopic properties of quantum systems relate to microscopic parameters is one of the most complex questions in mathematical physics. The EU-funded CLaQS project will focus on the study of important physical properties of many-body quantum systems. Its primary aim is to develop new mathematical tools to describe correlations between interacting particles and understand their effects on large quantum systems. The project will examine ground-state properties and low-energy excitations as well as non-equilibrium dynamics. Long-term goals include a mathematical proof of the emergence of Bose-Einstein condensation in the thermodynamic limit and a rigorous justification of the Boltzmann equation for fermions in the weak coupling limit.
Objective
This project is devoted to the mathematical analysis of important physical properties of many-body quantum systems. We will be interested in properties of the ground state and low-energy excitations but also of non-equilibrium dynamics. We are going to consider systems with different statistics and in different regimes. The questions we are going to address have a common aspect: correlations among particles play a crucial role. Our main goal consists in developing new tools that allow us to correctly describe many-body correlations and to understand their effects. The starting point of our proposal are ideas and techniques that have been introduced in a series of papers establishing the validity of Bogoliubov theory for Bose gases in the Gross-Pitaevskii regime, and in a recent preprint showing how (bosonic) Bogoliubov theory can also be used to study the correlation energy of Fermi gases. In this project, we plan to develop these techniques further and to apply them to new contexts. We believe they have the potential to approach some fundamental open problem in mathematical physics. Among our most ambitious objectives, we include the proof of the Lee-Huang-Yang formula for the energy of dilute Bose gases and of the corresponding Huang-Yang formula for dilute Fermi gases, as well as the derivation of the Gell-Mann--Brueckner expression for the correlation energy of a high density Fermi system. Furthermore, we propose to work on long-term projects (going beyond the duration of the grant) aiming at a rigorous justification of the quantum Boltzmann equation for fermions in the weak coupling limit and at a proof of Bose-Einstein condensation in the thermodynamic limit, two very challenging and important questions in the field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8006 Zurich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.