Description du projet
Une technologie améliorée de reconnaissance de séisme
Les efforts de prévision des tremblements de terre ont été entravés pendant des années par le manque de science et de technologie fiables. Curieusement, les progrès récents ont montré que l’apprentissage automatique (AA) permettait de prédire les séismes générés en laboratoire. Les tremblements sont précédés par une cascade d’événements de micro-défaillance qui émettent de l’énergie élastique d’une manière indiquant un effondrement catastrophique. L’AA peut ainsi prédire le temps d’effondrement et, dans certains cas, l’ampleur des tremblements de terre en laboratoire. Le projet TECTONIC, financé par l’UE, associera ces résultats à des observations de terrain et à l’AA pour rechercher des événements précurseurs de tremblement de terre et créer des modèles prédictifs des failles tectoniques. L’équipe pluridisciplinaire du projet a pour objectif de former la prochaine génération de chercheurs à la science des tremblements de terre et de favoriser un nouveau niveau de collaboration au sein de la communauté.
Objectif
Earthquakes represent one of our greatest natural hazards. Even a modest improvement in the ability to forecast devastating events like the 2016 sequence that destroyed the villages of Amatrice and Norcia, Italy would save thousands of lives and billions of euros. Current efforts to forecast earthquakes are hampered by a lack of reliable lab or field observations. Moreover, even when changes in rock properties prior to failure (precursors) have been found, we have not known enough about the physics to rationally extrapolate lab results to tectonic faults and account for tectonic history, local plate motion, hydrogeology, or the local P/T/chemical environment. However, recent advances show: 1) clear and consistent precursors prior to earthquake-like failure in the lab and 2) that lab earthquakes can be predicted using machine learning (ML). These works show that stick-slip failure events –the lab equivalent of earthquakes– are preceded by a cascade of micro-failure events that radiate elastic energy in a manner that foretells catastrophic failure. Remarkably, ML predicts the failure time and in some cases the magnitude of lab earthquakes. Here, I propose to connect these results with field observations and use ML to search for earthquake precursors and build predictive models for tectonic faulting.
This proposal will support acquisition and analysis of seismic and geodetic data and construction of new lab equipment to unravel earthquake physics, precursors and forecasts. I will use my background in earthquake source theory, ML, fault rheology, and geodesy to address the physics of earthquake precursors, the conditions under which they can be observed for tectonic faults and the extent to which ML can forecast the spectrum of fault slip modes. My multidisciplinary team will train the next generation of researchers in earthquake science and foster a new level of broad community collaboration.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- lettres histoire et archéologie histoire
- sciences naturelles sciences de la Terre et sciences connexes de l'environnement hydrologie hydrogéologie
- sciences naturelles sciences de la Terre et sciences connexes de l'environnement géologie sismologie
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-ADG - Advanced Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2018-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
00185 Roma
Italie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.