Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

The physics of Earthquake faulting: learning from laboratory earthquake prediCTiON to Improve forecasts of the spectrum of tectoniC failure modes: TECTONIC

Descrizione del progetto

Migliorata la tecnologia di riconoscimento delle scosse sismiche

Gli sforzi per prevedere i terremoti sono stati ostacolati per anni dalla mancanza di scienza e tecnologia affidabili. È interessante notare che i recenti progressi hanno dimostrato che i terremoti in laboratorio possono essere previsti con l’apprendimento automatico. Le scosse sono precedute da una cascata di eventi di micro-crolli che irradiano energia elastica in un modo che preannuncia un crollo catastrofico. L’apprendimento automatico può quindi prevedere il tempo del crollo e, in alcuni casi, l’entità dei terremoti in laboratorio. Il progetto TECTONIC, finanziato dall’UE, collegherà questi risultati con le osservazioni sul campo e l’apprendimento automatico alla ricerca di precursori dei terremoti e costruirà modelli predittivi per la fagliazione tettonica. Il gruppo multidisciplinare del progetto mira a formare la prossima generazione di ricercatori in scienze sismiche e a promuovere un nuovo livello di ampia collaborazione comunitaria.

Obiettivo

Earthquakes represent one of our greatest natural hazards. Even a modest improvement in the ability to forecast devastating events like the 2016 sequence that destroyed the villages of Amatrice and Norcia, Italy would save thousands of lives and billions of euros. Current efforts to forecast earthquakes are hampered by a lack of reliable lab or field observations. Moreover, even when changes in rock properties prior to failure (precursors) have been found, we have not known enough about the physics to rationally extrapolate lab results to tectonic faults and account for tectonic history, local plate motion, hydrogeology, or the local P/T/chemical environment. However, recent advances show: 1) clear and consistent precursors prior to earthquake-like failure in the lab and 2) that lab earthquakes can be predicted using machine learning (ML). These works show that stick-slip failure events –the lab equivalent of earthquakes– are preceded by a cascade of micro-failure events that radiate elastic energy in a manner that foretells catastrophic failure. Remarkably, ML predicts the failure time and in some cases the magnitude of lab earthquakes. Here, I propose to connect these results with field observations and use ML to search for earthquake precursors and build predictive models for tectonic faulting.

This proposal will support acquisition and analysis of seismic and geodetic data and construction of new lab equipment to unravel earthquake physics, precursors and forecasts. I will use my background in earthquake source theory, ML, fault rheology, and geodesy to address the physics of earthquake precursors, the conditions under which they can be observed for tectonic faults and the extent to which ML can forecast the spectrum of fault slip modes. My multidisciplinary team will train the next generation of researchers in earthquake science and foster a new level of broad community collaboration.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2018-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 2 603 500,00
Indirizzo
Piazzale Aldo Moro 5
00185 Roma
Italia

Mostra sulla mappa

Regione
Centro (IT) Lazio Roma
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 2 603 500,00

Beneficiari (2)

Il mio fascicolo 0 0