Description du projet
Des matériaux 2D intelligents pour le dessalement de l’eau
Récupérer de l’énergie ou offrir un accès à l’eau potable par dessalement de l’eau nécessite des solutions sous la forme de matériaux 2D possédant d’importantes applications industrielles. Tout comme le graphène, ces matériaux contiennent de minuscules capillaires et cavités qui conviennent parfaitement à la technologie du dessalement. L’objectif du projet GraFludicDevices, financé par l’UE, consiste à améliorer la compréhension fondamentale du transport moléculaire dans les nanocanaux constitués de différents matériaux 2D. Les chercheurs mettront au point des dispositifs à nanocanaux 2D pour étudier la dynamique de l’écoulement de l’eau – cinétique de perméation et séparation sélective des molécules d’eau des ions – en utilisant des techniques personnalisées de mesure du débit. Les résultats permettront de mieux comprendre le potentiel d’application des matériaux 2D pour le dessalement de l’eau et les technologies connexes, en termes de rentabilité.
Objectif
Exploration of molecular transport in nanometre (nm) and sub-nm capillaries has big implications in the emergence of novel nanofluidic phenomena with interesting applications, including desalination, water purification, energy harvesting and smart membrane technologies. Recent advances in graphene and other two-dimensional (2D) materials based membranes with interlayer gallery of nanochannels have witnessed high water-ion selectivity and fast water permeation—manifesting their potential for desalination and smart membrane applications. However, a systematic and extensive experimental investigation of water permeation kinetics, including the demonstration of slip effects, in these atomically smooth 2D nanochannels is still lacking. Therefore, the main objective of the current research proposal is to gain a complete mechanistic understanding of water transport in nanochannels made of different 2D materials, which is crucial for the rational design of functional membranes for energy and environmental applications. This will be achieved by employing the state-of-the-art fabrication and experimental techniques based on van der Waals assembly, Landau-Squire flow measurement set-up and ultrasonic force microscopy. In this project, atomically smooth angstrom-scale 2D nanochannel devices will be prepared to investigate the flow dynamics of water using a custom-made ultrasensitive flow measurement technique. Throughout the project, advanced modelling techniques will be utilized to fundamentally understand transport and further optimize the system. Building on these findings, a scale-up methodology will be developed for the large-scale production of membranes for desalination and energy harvesting applications. The proposed research action will address Horizon 2020 Societal Challenges related to water security and resource efficiency while advancing the field of nanofluidics and membrane technology through the development of new fabrication and flow measurement methods.
Champ scientifique
Programme(s)
Régime de financement
MSCA-IF-EF-ST - Standard EFCoordinateur
75794 Paris
France