Skip to main content
European Commission logo print header

Surface-functionalised nanocrystal catalysts for the electrochemical reduction of carbon dioxide

Project description

Functionalised outer shells give copper nanocrystals outsized catalytic power

Among the important ways to reduce atmospheric CO2 is its capture and catalytic conversion into useful chemicals. The electrochemical reduction of CO2 can help us store excess renewable electricity in the bonds of carbon-based liquid fuels and industrially relevant chemicals. It is a win-win-win proposition, reducing CO2, generating useful chemicals and relying on renewable energy sources to do so. However, it faces challenges related to the low selectivity, activity and stability of electrocatalysts in aqueous solutions. The EU-funded SURFCAT project is developing approaches to modify copper nanocrystals, the catalyst of choice, to surpass these obstacles and spur the commercialisation of this important process to close the carbon cycle, protect the environment and provide fuels and chemicals.

Objective

With an expanding population and finite fossil fuel resources, society faces several major challenges regarding energy and the environment. SURFCAT seeks to address these issues by making advances in the electrochemical carbon-dioxide reduction-reaction (CO2RR), which converts carbon dioxide into hydrocarbon fuels using renewable electrical energy. Whilst copper is the only metal able to produce hydrocarbons in the CO2RR, modifications to pure, bulk copper are required in order to bypass its intrinsic limitations. Copper nanocrystals (CuNCs) offer enhanced activity and selectivity for single products in the CO2RR, yet there is a need to improve these materials further. SURFCAT strives to take advantage of surface modification in order to deliver these improvements. SURFCAT will go beyond the state-of-the-art by modifying the surfaces of CuNCs with functional organic ligands. The objectives of the research will be to: 1) synthesise new organic molecules, judiciously designed to influence favourable interactions between the CuNCs and carbon dioxide; 2) synthesise hybrid CuNCs, consisting of a metallic, nanocrystalline core and a functional ligand shell; 3) study and optimise the electrocatalytic performance of these novel materials; and 4) use spectroscopy and computational modelling to understand their mode of action and offer insight into the role of functional ligands on catalyst surfaces. These objectives will be achieved by combining the applicant’s expertise in steering catalysis through ligand design with the host laboratory’s expertise in nanocrystal synthesis and electrocatalysis. SURFCAT is perfectly aligned with the MSCA Work Programme, combining unique skills and knowledge from both the applicant and the host laboratory. Through training during his time at EPFL, the applicant will develop professional, language and teaching skills on top of his research efforts, in order to become a mobile and World-leading researcher.

Coordinator

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Net EU contribution
€ 191 149,44
Address
BATIMENT CE 3316 STATION 1
1015 Lausanne
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 191 149,44