Project description
Flexible polymers for smart textile applications
Organic polymers with conducting properties are gaining a great deal of attention due to their low synthesis cost and ease of manipulation. Smart textiles are among the most exciting and futuristic applications of these materials. However, current conducting polymers are too brittle for use in textiles. Funded under the Marie Skłodowska-Curie programme, the TEXTHIOL project aims to create a conductive elastomeric polymer with enhanced material properties that can be applied directly as scaffold for smart textiles. To create the polymeric scaffold, the project will use the nucleophilic thiol-yne click reaction between the alkyne and thiol.
Objective
Organic conductive polymers are gaining increased interest each day due to their broad applications, low cost and ease of manipulation. Their potential to develop new products that will transform the daily lives of people in Europe and around the world is significant. Among the application areas with the highest potential, smart textiles provide one of the most futuristic and innovative potential products. At present, a conducting polymeric material that can be use directly as textile does not exist primarily a consequence of the poor (brittle) materials properties of conducting polymers. Any such products are created by coating of the conductive material onto the textile or tissue. However the ability to use polymers to create wearable electronics has transformative potential to become a disruptive technology. This proposal aims to create a conductive polymer with elastomeric properties such that it has enhanced materials properties and can therefore be applied directly as scaffold for smart textile creation. To make the polymeric scaffold, the nucleophilic thiol-yne “click” reaction between an activated alkyne and thiol will be used. This pathway will enable retention of the electrical conductivity while presenting the possibility to tune the mechanical properties by choosing the stereochemistry (E/Z) of the unsaturated bond that is formed. Moreover, the elastomeric nature of the resultant materials, presents a unique opportunity to create conductive elastomers that can be easily applied to wearable electronics: able to record electrical signals such as heartbeats or muscular contractions. The project is going to combining the organic synthesis and click chemistry expertise of Mantione with that of conducting polymer synthesis and characterization of Prof. Hadziioannou. The planned secondment is aiming to allied to the expertise of Prof. Malliaras (Cambridge, UK) in wearable electronics: biotest the materials and practically create the textile.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics
- natural sciences chemical sciences polymer sciences
- engineering and technology materials engineering textiles
- engineering and technology materials engineering coating and films
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
33000 BORDEAUX
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.