Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Carbon Nanomembranes with Sub-Nanometer Channels for Molecular Separation in Organic Liquids

Descripción del proyecto

Filtrado de moléculas con nanomembranas finas de carbono

Aumentar la eficacia energética es una preocupación primordial de las industrias con un elevado consumo energético. El nanofiltrado con solventes orgánicos constituye una alternativa sostenible y fiable a los actuales métodos de separación molecular. Este método de separación con membranas tiene potencial para lograr unos ahorros energéticos en la industria química superiores al 90 % respecto a la destilación convencional. La principal dificultad que afronta esta tecnología es la falta de materiales con un flujo, selectividad y resistencia química elevados. El proyecto CNSOL, financiado en el marco de las Acciones Marie Skłodowska-Curie, abordará este desafío construyendo una nanomembrana de carbono con una capa selectiva ultrafina, un tamaño de poros uniforme y una red entramada. Las nanomembranas de carbono son materiales bidimensionales que facilitan la obtención de capas de separación químicamente estables. Su estructura molecular puede adaptarse mediante síntesis con moléculas especialmente creadas.

Objetivo

Energy efficiency is a key principle of the EU’s 2020 strategy for smart, sustainable and inclusive growth, and implementation of this strategy requires innovation in energy intensive industries. Organic solvent nanofiltration (OSN) meets this need—it is a membrane-based separation with the potential to achieve more than 90% energy savings over conventional distillation in the energy intensive chemical industry. Current challenges for OSN are the need for materials with high flux, high selectivity and high chemical resistance. This proposal advocates meeting this need by constructing a membrane with: i) an ultrathin selective layer, ii) uniform pore sizes and iii) a cross-linked network. Carbon nanomembranes (CNMs) are 2D materials made by crosslinking of self-assembled monolayers; this results in a film with single-molecule thickness. CNMs mainly comprise carbon, resulting in chemically-stable separating layers. Also, their molecular structure is tunable by synthesis with purpose-designed molecules. Recently, the Fellow was part of the team which created the first 1.2-nm thin CNM with a high density of sub-nm channels, providing ultrafast permeation of water while blocking the passage of most other molecules.
This project will combine the Fellow’s expertise in the development of single-molecule-thick films with the host’s expertise in OSN and interfacial synthesis; it aims to design new nanomaterials for advancing molecular separation in organic liquids. The objectives of the project are to: 1) demonstrate the ability of freestanding CNMs for OSN; 2) explore the tunability of CNMs at a molecular level for improved selectivity; 3) create nanocomposite membranes comprising interfacially synthesized mesoporous films supporting CNM separating layers.
This highly innovative and interdisciplinary research will promote the Fellow’s career prospects by widening her research perspectives, enriching her research experiences and expanding her network with European colleagues.

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Aportación neta de la UEn
€ 224 933,76
Dirección
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Reino Unido

Ver en el mapa

Región
London Inner London — West Westminster
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 224 933,76