CORDIS - Resultados de investigaciones de la UE
CORDIS

Two Dimensional Materials for Photonic Devices

Descripción del proyecto

Materiales bidimensionales para aumentar la eficacia de las celdas fotovoltaicas y los fotodetectores

La investigación científica se centra en una nueva generación de semiconductores para crear celdas fotovoltaicas y fotodetectores muy eficientes y baratos. Sin embargo, la fabricación de esos dispositivos optoelectrónicos a nivel industrial suscita preocupaciones a nivel político, medioambiental, económico y tecnológico. Los dicalcogenuros de metales de transición (DMT) bidimensionales, como el MoS2 y el WS2, parecen ser prometedores ya que dichos materiales presentan estabilidad a largo plazo, resultan fáciles de procesar y son abundantes. No obstante, para la fotovoltaica, el limitado espesor de absorción representa un desafío general. El proyecto 2D_PHOT, financiado con fondos europeos, propone una nanoestructuración para maximizar el cultivo solar en dichos dispositivos. El proyecto diseñará y producirá una celda fotovoltaica y un fotodetector eficientes mediante la integración del diseño fotónico, además de demostrar un mayor rendimiento en un dispositivo de grafeno, DMT y reflector con refuerzo metálico.

Objetivo

The need for inexpensive yet highly efficient photodetectors and solar cells is driving the search for a new generation of semiconductors that have high absorbance in the visible, broad wavelength operation range, are transparent and flexible albeit with strong light-matter interaction, and are easy to process. Manufacturing these optoelectronic devices at a large scale involves concerns at technological, economical, ecological, social and political levels. Ideally, the new materials are abundant, easily processed and feature long term stability and non-toxicity. The advent of 2D transition metal dichalcogenides (TMDCs). e.g. MoS2 and WS2, has generated great expectations since these materials fulfill all these requirements. 2D-TMDCs exhibit direct band gaps, high absorption coefficients, and high carrier mobility values, making them promising candidates for optoelectronic applications. The out-of-plane quantum confinement responsible for the direct bandgap in the monolayer, also allows for the modulation of the bandgap as a function of the number of layers. However, for photovoltaics (PV), even if transparency is an important attribute in some niche markets, e.g. building-integrated PV, thickness-limited absorption poses a challenge in general. To overcome this issue, we propose a photonic nanostructuration to maximize light harvesting in these devices. We will combine strong interference effects based in the small penetration in a metallic substrate and the light trapping due to the nanostructuration by lithography of TMDCs over a metallic substrate. Resonators with high-quality factors will have potential applications in light harvesting devices, such as photodetectors, but also in solar cells. We will design and fabricate such an efficient photodetector, and also a solar cell incorporating the photonic design, and demonstrate enhanced performance in a metal back reflector/TMDC/graphene device.

Coordinador

INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY
Aportación neta de la UEn
€ 159 815,04
Dirección
AVENIDA MESTRE JOSE VEIGA
4715-330 Braga
Portugal

Ver en el mapa

Región
Continente Norte Cávado
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 159 815,04