Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Two Dimensional Materials for Photonic Devices

Descripción del proyecto

Materiales bidimensionales para aumentar la eficacia de las celdas fotovoltaicas y los fotodetectores

La investigación científica se centra en una nueva generación de semiconductores para crear celdas fotovoltaicas y fotodetectores muy eficientes y baratos. Sin embargo, la fabricación de esos dispositivos optoelectrónicos a nivel industrial suscita preocupaciones a nivel político, medioambiental, económico y tecnológico. Los dicalcogenuros de metales de transición (DMT) bidimensionales, como el MoS2 y el WS2, parecen ser prometedores ya que dichos materiales presentan estabilidad a largo plazo, resultan fáciles de procesar y son abundantes. No obstante, para la fotovoltaica, el limitado espesor de absorción representa un desafío general. El proyecto 2D_PHOT, financiado con fondos europeos, propone una nanoestructuración para maximizar el cultivo solar en dichos dispositivos. El proyecto diseñará y producirá una celda fotovoltaica y un fotodetector eficientes mediante la integración del diseño fotónico, además de demostrar un mayor rendimiento en un dispositivo de grafeno, DMT y reflector con refuerzo metálico.

Objetivo

The need for inexpensive yet highly efficient photodetectors and solar cells is driving the search for a new generation of semiconductors that have high absorbance in the visible, broad wavelength operation range, are transparent and flexible albeit with strong light-matter interaction, and are easy to process. Manufacturing these optoelectronic devices at a large scale involves concerns at technological, economical, ecological, social and political levels. Ideally, the new materials are abundant, easily processed and feature long term stability and non-toxicity. The advent of 2D transition metal dichalcogenides (TMDCs). e.g. MoS2 and WS2, has generated great expectations since these materials fulfill all these requirements. 2D-TMDCs exhibit direct band gaps, high absorption coefficients, and high carrier mobility values, making them promising candidates for optoelectronic applications. The out-of-plane quantum confinement responsible for the direct bandgap in the monolayer, also allows for the modulation of the bandgap as a function of the number of layers. However, for photovoltaics (PV), even if transparency is an important attribute in some niche markets, e.g. building-integrated PV, thickness-limited absorption poses a challenge in general. To overcome this issue, we propose a photonic nanostructuration to maximize light harvesting in these devices. We will combine strong interference effects based in the small penetration in a metallic substrate and the light trapping due to the nanostructuration by lithography of TMDCs over a metallic substrate. Resonators with high-quality factors will have potential applications in light harvesting devices, such as photodetectors, but also in solar cells. We will design and fabricate such an efficient photodetector, and also a solar cell incorporating the photonic design, and demonstrate enhanced performance in a metal back reflector/TMDC/graphene device.

Coordinador

INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY
Aportación neta de la UEn
€ 159 815,04
Dirección
AVENIDA MESTRE JOSE VEIGA
4715-330 Braga
Portugal

Ver en el mapa

Región
Continente Norte Cávado
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 159 815,04