Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

circuit Quantum Magneto-Mechanics : interfacing single molecular spins with nanomechanical resonators in the quantum regime.

Project description

Controlling and reading out molecular spins for scalable quantum computing

Conventional computers represent, process and store information as combinations of zeros and ones. Transistors are the physical method of storage of these 'bits' of information since transistors are like switches with an 'on' or 'off' state. Qubits, or quantum bits, rely on quantum states of a 2-level quantum system. Spins in molecules have discrete energy levels, and their associated quantum states can be used to encode qubits. Further, molecules are larger and more versatile than atoms, opening the door to scalability. We need the ability for control and readout on fast time scales. The EU-funded cQMM project will tackle this challenging task with the help of nanomechanical resonators.

Objective

The spin degree of freedom is a natural candidate to carry quantum information. Because of a generally weak coupling to its environment, it benefits from long lifetimes even in solid-state devices. The counterpart of this natural isolation is the challenge to engineer efficient control and readout of these spin states. Even more challenging is the coupling between distant spins, which is fundamental requirement to perform quantum computations. Among the various types of existing spin systems, molecular spins have shown remarkable properties. They are stable, they can be produced in large numbers of absolutely identical molecules and their properties are tuned and defined via chemical synthesis. The host group is recognized as an international leader in the field of molecular spins and has recently demonstrated elementary quantum information processing with such spins.

Besides, it is known that in a solid state context, the dominant source of decay for molecular spins comes from the coupling to their mechanical environment via spin-phonon coupling. These phonons are often seen as a nuisance, but they actually constitute an interesting degree of freedom that has recently been intensely investigated in the field of circuit quantum electromechanics. The ER has acquired experience in this field during his 3.5 years of postdoc in the group of Konrad Lehnert (USA), a pioneering group in this field.

We propose to take advantage of the natural spin-phonon coupling in molecular magnets, maximize it, and use it as a resource to control and readout molecular spins on fast time scales. The architecture consists of a molecular spin deposited on a mechanical oscillator in the quantum regime, which is controlled using the powerful techniques available in circuit quantum electromechanics. Such an interface could enable the coupling of distant molecular spins, but also the coupling to other degree of freedom such as optical photons, superconducting qubits or other spin systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-RI - RI – Reintegration panel

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 157 184,72
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 196 707,84
My booklet 0 0