Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

circuit Quantum Magneto-Mechanics : interfacing single molecular spins with nanomechanical resonators in the quantum regime.

Descripción del proyecto

Controlar y leer espines moleculares para una computación cuántica escalable

Los ordenadores convencionales representan, procesan y almacenan la información como combinaciones de ceros y unos. Los transistores son el método físico de almacenamiento de estos «bits» de información, ya que son como botones de encendido y apagado. Los cúbits, o bits cuánticos, se basan en estados cuánticos de un sistema cuántico de dos niveles. Los espínes de las moléculas tienen niveles de energía discretos, y sus estados cuánticos asociados pueden utilizarse para codificar cúbits. Además, las moléculas son más grandes y versátiles que los átonos, lo que abre la puerta a la escalabilidad. Necesitamos poder controlar y leer en escalas temporales rápidas. El proyecto financiado con fondos europeos cQMM abordará esta difícil tarea con la ayuda de resonadores nanomecánicos.

Objetivo

The spin degree of freedom is a natural candidate to carry quantum information. Because of a generally weak coupling to its environment, it benefits from long lifetimes even in solid-state devices. The counterpart of this natural isolation is the challenge to engineer efficient control and readout of these spin states. Even more challenging is the coupling between distant spins, which is fundamental requirement to perform quantum computations. Among the various types of existing spin systems, molecular spins have shown remarkable properties. They are stable, they can be produced in large numbers of absolutely identical molecules and their properties are tuned and defined via chemical synthesis. The host group is recognized as an international leader in the field of molecular spins and has recently demonstrated elementary quantum information processing with such spins.

Besides, it is known that in a solid state context, the dominant source of decay for molecular spins comes from the coupling to their mechanical environment via spin-phonon coupling. These phonons are often seen as a nuisance, but they actually constitute an interesting degree of freedom that has recently been intensely investigated in the field of circuit quantum electromechanics. The ER has acquired experience in this field during his 3.5 years of postdoc in the group of Konrad Lehnert (USA), a pioneering group in this field.

We propose to take advantage of the natural spin-phonon coupling in molecular magnets, maximize it, and use it as a resource to control and readout molecular spins on fast time scales. The architecture consists of a molecular spin deposited on a mechanical oscillator in the quantum regime, which is controlled using the powerful techniques available in circuit quantum electromechanics. Such an interface could enable the coupling of distant molecular spins, but also the coupling to other degree of freedom such as optical photons, superconducting qubits or other spin systems.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Coordinador

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Aportación neta de la UEn
€ 157 184,72
Dirección
RUE MICHEL ANGE 3
75794 Paris
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Hauts-de-Seine
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 196 707,84