Project description DEENESFRITPL Algorithms for improved rainfall predictions The Mediterranean region (MED) is a hot-spot of anthropogenic climate change. To assure effective near-term planning, decisionmakers in weather-dependent sectors depend on skilful forecasts of precipitation on sub-seasonal to seasonal (S2S) timescales. However, some fundamental challenges prevent reliable predictions beyond approximately 10 days. The EU-funded CausalBoost project will apply an innovative method to improve S2S forecasts of MED rainfall. The approach relies on a combination of innovative causal discovery algorithms from machine learning with operational forecast models. The project will identify central S2S drivers of MED rainfall, systematically assess them with prediction models and produce process-based bias corrections. Show the project objective Hide the project objective Objective The Mediterranean region (MED) is a hotspot of anthropogenic climate change and impacts are probably already felt today; recent heatwaves and persistent droughts have led to crop failures, wild fires and water shortages, causing large economic losses. Climate models robustly project further warming and drying of the region, putting it at risk of desertification. The particular vulnerability of this water-limited region to climatic changes has created an urgent need for reliable forecasts of rainfall on subseasonal to seasonal (S2S) timescales, i.e. 2 weeks up to a season ahead. This S2S time-range is particularly crucial, as the prediction lead time is long enough to implement adaptation measures, and short enough to be of immediate relevance for decision makers. However, predictions on lead-times beyond approximately 10 days fall into the so-called “weather-climate prediction gap”, with operational forecast models only providing marginal skill. The reasons for this are a range of fundamental challenges, including a limited causal understanding of the underlying sources of predictability. The proposed research effort aims to improve S2S forecasts of MED rainfall by taking an innovative, interdisciplinary approach that combines novel causal discovery algorithms from complex system science with operational forecast models. This will overcome current limitations of conventional statistical methods to identify relevant sources of predictability and to evaluate modelled teleconnection processes. The outcomes of this project will (i) identify key S2S drivers of MED rainfall, (ii) systematically evaluate them in forecast models, (iii) derive process-based bias corrections to (iv) boost forecast skill. My strong background in both causal inference techniques and atmospheric dynamics puts me in a unique position to lead this innovative effort and to achieve real progress in reducing the “weather-climate prediction gap” for the MED region. Fields of science agricultural sciencesagriculture, forestry, and fisheriesagriculturenatural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2018 - Individual Fellowships Call for proposal H2020-MSCA-IF-2018 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator THE UNIVERSITY OF READING Net EU contribution € 212 933,76 Address Whiteknights campus whiteknights house RG6 6AH Reading United Kingdom See on map Region South East (England) Berkshire, Buckinghamshire and Oxfordshire Berkshire Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00