Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Catch Bond Cross-linked Hydrogels

Project description

A closer look at the ‘catch’ bond behaviour

The EU-funded CatchGel project aims to expand the boundaries of biology and materials science, from the molecular to the macroscale. The researchers will focus on the intrinsic workings of bacterial catch bonds, specifically environmental factors affecting their behaviour. They will also study how their behaviour is modified or scaled by inclusion in a macroscale material. By studying the ‘catch’ bond behaviour, the project will investigate their ability to revolutionise biomimetic materials.

Objective

Catch bonds are one of Natures truly remarkable designs, which exhibit increased adhesive force as tensile force is applied, in contrast to traditional slip bonds whose adhesive force decreases under similar conditions. On reaching a maximum applied force, the catch bond then reverts to traditional slip bond behaviour resulting in a catch-and-roll type action that bacteria and cells use to move in a targeted fashion along a particular surface. The current research project aims to transplant this behaviour from bacterial systems into bio-based synthetic polymer networks, allowing the development of truly biomimetic mechanically adaptable materials. The aims of the project will be achieved by exploring a number of recently identified bacterial catch bonds, isolating the specific amino acid sequence responsible for this behaviour and using them to functionalise bio-based polymer chains. Using the receptor-ligand complexes specific to each bacterial adhesive, dynamic polymer networks will be constructed that display an adaptable response to force as observed in bacterial catch bonds. This represents an important area of research, for whilst the observation of catch bond behaviour is relatively recent, their ability to revolutionise biomimetic materials is enormous. Their behaviour under stress is reminiscent of that of smooth muscle during peristaltic motion and materials mimicking this behaviour have the potential to drive new developments in synthetic organ and disease model research. Thoughout this project, fundamental insights will be gained into the intrinsic workings of bacterial catch bonds, specifically environmental factors affecting their behaviour, as well as how their behaviour is modified or scaled by inclusion in a macroscale material. The interdisciplinary project aims to push the boundaries of biology and materials science, from the molecular to the macroscale.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

UNIVERSITAT BASEL
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 304 724,16
Address
PETERSPLATZ 1
4051 Basel
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 304 724,16
My booklet 0 0