Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Computational Intelligence for Multi-Source Remote Sensing Data Analytics

Descripción del proyecto

Aprendizaje profundo en la observación terrestre para obtener mejores datos

La observación terrestre (OT) está cambiando significativamente debido a la gran cantidad de observaciones obtenidas a partir de la teledetección y las redes de sensores «in situ» que adquieren mediciones localizadas muy precisas. A fin de calcular parámetros geofísicos se necesitan nuevas soluciones para obtener datos a partir de instrumentos terrestres y espaciales. Para comprender mejor los datos de múltiples fuentes de la OT, el proyecto CALCHAS, financiado con fondos europeos, obtendrá observaciones de diversas fuentes, combinará escalas de muestras asociadas con mediciones «in situ» y espaciales y analizará series temporales de observaciones dinámicas. Se usarán herramientas matemáticas para ampliar la actual capacidad de análisis de datos de una única fuente. El proyecto analizará series temporales de mediciones de microondas pasivas y activas, instrumentos de imagenología de espacios multiespectrales y mediciones de sensores «in situ».

Objetivo

Earth Observation (EO) is undergoing a radical transformation due to the massive volume of observations acquired by remote sensing and in-situ sensor networks. While satellites provide coarse-resolution, yet global-scale monitoring of environmental processes, in-situ sensor networks acquire high-accuracy localized measurements. Extracting information from spaceborne and ground based instruments requires innovative solutions which will allow the autonomous integration of diverse in nature and scale observations in order to provide high-quality geophysical parameter estimation. CALCHAS will demonstrate cutting edge technologies targeting three major factors towards the vision of fully automated multi-source EO data understanding, namely (i) the fusion of observations from different sources and modalities, (ii) the efficient aggregation of the sampling scales associated with spaceborne and in-situ measurements, and (iii) the analysis of time-series of dynamic observations. To that end, the paradigm-shifting signal processing and learning framework of Deep Learning will be utilized and extended through powerful mathematical tools and appropriate methodologies like supervised and generative learning, dramatically extending the current scope of single source data analysis. The developed framework will be employed for analyzing time-series of measurements from active and passive microwave and multispectral spaceborne imaging instruments (SMAP, SMOS and Sentinels), and in-situ sensor measurements, targeting the high-accuracy spatial and temporal resolution enhancement for observations and soil moisture estimation. The merits of the developed technology will be demonstrated in two intelligent water management case studies, namely optimized irrigation management and water pipeline leakage detection.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF-GF - Global Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2018

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

IDRYMA TECHNOLOGIAS KAI EREVNAS
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 215 492,16
Dirección
N PLASTIRA STR 100
70 013 IRAKLEIO
Grecia

Ver en el mapa

Región
Νησιά Αιγαίου Κρήτη Ηράκλειο
Tipo de actividad
Research Organisations
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 215 492,16

Socios (1)

Mi folleto 0 0