Description du projet
Des formes différentielles sur des espaces analytiques non archimédiens
Au début des années 2000, les mathématiciens Kontsevich et Soibelman ont introduit deux variantes de la conjecture SYZ provenant de la théorie des cordes: la première non-archimédienne et la seconde différentielle-géométrique. Les deux conjectures postulent l’existence d’une variété affine singulière. Les deux approches devraient donner le même résultat, avec des variétés affines singulières correspondantes naturellement isomorphes; malheureusement, l’existence d’un tel isomorphisme est désormais remise en question. Financé par le programme Actions Marie Skłodowska-Curie, le projet nalimdif travaille sur de nouveaux outils qui devraient nous permettre d’étudier cette dernière hypothèse et de mieux comprendre les limites de l’effondrement de Gromov-Hausdorff. L’étude proposée repose sur la théorie des formes différentielles sur les espaces analytiques non archimédiens développée par Chambert-Loir et Ducros.
Objectif
In the beginning of 2000s Kontsevich and Soibelman have introduced two variants of the SYZ conjecture originating from string theory: a non-Archimeadean one and a differential-geometric one. Both of these conjectures posit existence of a singular affine manifold (the base of the SYZ fibration) that can be obtained either as a subset of the non-Archimedean analytic space associated to a family of complex projective Calabi-Yau varieties with maximally unipotent monodromy, or as a Gromov-Hausdorff limit of fibres of the family with Ricci-flat metric in the polarization class and normalized diameter (the latter was also independently conjectured by Gross, Wilson, and Todorov). Recent years have seen active developments in both of these conjectures through work of de Fernex, Kollár, Mustaţa, Nicaise, Xu, Gross, Tosatti, Zhang and others. Kontsevich and Soibelman have also conjectured that both approaches give the same result, with corresponding singular affine manifolds naturally isomorphic; unfortunately, the existence of such an isomorphism is open as of now.
The aim of this project is to build tools that will allow both to attack the comparison conjecture and to make progress in the understanding of the collapsing Gromov-Hausdorff limits in the odd-dimensional case (hypekähler case having been extensively studied). The proposed approach is based on the theory of differential forms on non-Archimedean analytic spaces due to Chambert-Loir and Ducros. Firstly, a notion of a non-Archimedean limit of a degenerating family of real forms with values in Chambert-Loir-Ducros forms will be defined. Secondly, the metric structure of the collapsing limit will be described in terms of such non-Archimedean limits of Kähler forms. Thirdly, the canonical affine structure on the limit space conjectured to exist in the metric picture will be studied using non-Archimedean methods, assuming a natural statement about the limits of the solutions of Monge-Ampere equations.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF-EF-ST - Standard EF
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
3000 LEUVEN
Belgique
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.