Periodic Reporting for period 1 - PARNANT (Pathogenetic pathways in age-related neurodegenerations as novel therapeutic targets for Parkinson’s disease)
Reporting period: 2019-09-02 to 2021-09-01
As the incidence of PD increases with age (with estimated 4% prevalence over 85 years of age), the rapidly growing lifespan of human population is a huge economic and social burden for society. Current therapeutic interventions only alleviate symptoms but do not halt disease progression or induce neuro-restoration. Identifying novel molecular targets and searching for therapeutic agents that block neurodegeneration and promote neuronal restoration is a key challenge in the field.
This project aimed to use a roundworm C. elegans, as an animal model, to identify genes modulating pathology associated with Parkinson’s disease (Objective 1), and subsequently elucidate the conservation of the newly identified genetic components in human cell-based model systems (Objective 2).
Firstly, a new model (eraIs1) was constructed with a fluorescent alpha-synuclein construct. The obtained data using eraIs1, identified 28 C. elegans genes that modulated neurotoxicity caused by human alpha-Synuclein and genes that regulated the abundance of Parkin (the major cause of autosomal recessive juvenile parkinsonism). Subsequent evaluation of some of these genes on PD pathogenesis in human cell model systems suggested that genes regulating intracellular calcium levels could modulate alpha-Synuclein pathology. These data indicate that they might play a role in the pathogenesis of PD. This project thus provided both a new C. elegans model for PD gene screening, and identified new potential therapeutic targets for aging-related neurodegenerative diseases, and should therefore also bring forth an understanding of pathology in PD.
The second objective of the project was to evaluate the conserved modulatory role of the identified genes on PD pathology using a human cell model system. The obtained data suggested that the identified genes regulating calcium levels are also mis-regulated in PD, and their overexpression can modulate alpha-Synuclein levels in human neuronal models. These interesting preliminary data lay the basis for many possible follow up studies.
The results of the Objective 1 have been summarized in two manuscripts, while the results of the Objective 2 have generated preliminary data for ongoing projects that will be published in the following years.
Moreover, using C. elegans at the Host institute will serve as a new tool to screen for risk genes of several diseases, including neurological and cardiovascular diseases, identified from the genetic diagnosis and large population screening data from the South Tyrol. The established animal model facility strengthens the collaboration between Bioinformatics and “wet-lab” Research within the Institute and provides a unique interdisciplinary and competitive approach for biomedical science in South Tyrol. This project thus fulfilled the research gap in the province and should lead to collaborative projects to evaluate newly identified neuroprotective pathways in vertebrate models in the near future and eventually with local stakeholders for clinical trials involving patients with the disease.