Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Applying Machine Learning to Cyber Risk Analysis and Mitigation

Descripción del proyecto

Consideraciones de ciberseguridad para coches autónomos

El aumento de la conectividad y la tecnología de automatización crea cada vez más oportunidades en muchos campos. Estos avances tecnológicos afectan de forma generalizada al campo de los vehículos autónomos y conectados (VAC). Aunque la innovación está cambiando drásticamente las normas comerciales y favoreciendo las inversiones, también se arriesga a sufrir ataques de ciberseguridad. El proyecto MALAGA, financiado con fondos europeos, utilizará la tecnología de aprendizaje automático para investigar los riesgos de ciberseguridad, así como para buscar formas de reducir los riesgos en el campo de los VAC. Gracias al aprendizaje automático, el proyecto predecirá los riesgos y establecerá el valor de las pólizas de seguro para allanar el camino a la innovación y la actividad emprendedora en Europa.

Objetivo

Increasing connectivity and automation presents many opportunities and challenges for society. Emerging technology can benefit all citizens with better communication, increased environmental sustainability, autonomous transport, safer roads,, the list is almost inexhaustible. These emerging technologies will disrupt existing business models including underwriting and risk transfer. This disruption can stifle venture capital, innovation and risk taking in key emerging technologies and can inhibit regulatory development and societal acceptance.

My research will examine Connected and Autonomous Vehicles (CAV) cybersecurity risks and mitigation using Machine Learning (ML) techniques to predict future risks, price insurance policies and and thereby foster innovation and entrepreneurial activity in Europe. My research will go beyond the SoA and implement models in ML like ensemble models and deep learning to forecast the risks of CAV technology. A network model of interactions will be trained and evaluated to study cascading of risks and threats in the CAV environment.

My host team at the University of Limerick have members with machine learning skills, actuarial skills, ethical skills and underwriting experience. I will have access to staff development programmes, training courses, workshops, online courses and internal meetings. My host team are directly connected to a large variety of colleagues in other EU locations in both academic and industry positions. I will work with my host and partners to develop my research and increase my skillsets.

My research directly contributes to several UN sustainable development goals. On a personal level, the impact of my fellowship and collaborations will expand my set of skills, both research-related and transferable ones, leading to greatly improved career prospects both in and outside academia. My new abilities will include enhanced machine learning capabilities, cyber risk expertise and risk engineering skills.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Coordinador

UNIVERSITY OF LIMERICK
Aportación neta de la UEn
€ 196 590,72
Dirección
NATIONAL TECHNOLOGICAL PARK, PLASSEY
- Limerick
Irlanda

Ver en el mapa

Región
Ireland Southern Mid-West
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 196 590,72