Project description
A 'smart' cortical neuron computational model
Our understanding of the strategies by which single-cell processing enhances the neural code is obscured when it comes to specific operations from the dendritic repertoire that are employed in vivo. The statistics of in vivo input patterns are unknown; it is unclear how salient information is presented to the dendrites of a neuron and what mechanisms are used for its transduction to action potential output at the axon. The EU-funded DendritesInVivo project is creating a computational model of a cortical neuron that will learn to distinguish between synaptic input patterns to discover the optimal scheme for encoding and decoding information. The model will predict the spatiotemporal patterns of synaptic input to neurons and the mechanisms by which this information can be extracted.
Objective
Integration of synaptic input by single neurons is fundamental to computation in the brain. The output of every cell within a network is shaped by the elaborate morphology of its dendritic tree, and a suite of biophysical mechanisms that confer nonlinear processing capabilities. Over past decades, a remarkable synergy between theory and experiment has elucidated key strategies by which single-cell processing could thus enhance the neural code. However, a critical gap in current understanding remains: which operations from the vast dendritic repertoire are actually employed in vivo? One major obstacle to addressing this problem is that the statistics of in vivo input patterns are largely unknown. Thus, it is unclear how salient information is presented to the dendrites of a neuron, and by extension, what mechanisms are used for its transduction to action potential output at the axon.
I aim to answer these questions by combining my expertise with that of the host lab to formulate theoretical predictions and then validate them with in vivo experiments. Specifically, I will construct a computational model of a cortical neuron that learns to discriminate synaptic input patterns, and use it to discover the optimal scheme for encoding and decoding information. I will thus predict the spatiotemporal patterns of synaptic input to stimulus-tuned neurons, and the biophysical mechanisms through which this information can be extracted. I will then test these predictions in primary visual cortex of awake behaving mice through two-photon dual-colour imaging of presynaptic glutamate release and postsynaptic calcium dynamics. By relating the algorithmic and biological function of neurons in the living brain, I anticipate this project will yield important insights into general principles of neural computation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences chemical sciences inorganic chemistry alkaline earth metals
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC1E 6BT LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.