Description du projet
Nouvelles structures légères et durables
Des matériaux légers, durables et viables ouvrent la voie à l’industrie des transports du futur. Les matériaux composites en polymères renforcés de fibres (FRP) sont prometteurs, mais il est nécessaire de prévoir leur comportement mécanique exact qui semble dépendre de la vitesse de déformation. Le projet FIDELITY, financé par l’UE, vise à soutenir une bourse individuelle pour un chercheur qui élaborera une nouvelle méthodologie appliquée expérimentalement pour obtenir des mesures thermomécaniques intégrées plein champ et de haute-fidélité de la contrainte et de la déformation. Une nouvelle imagerie plein champ sera utilisée pour la détection et l’analyse des dommages subis par les composites, et les données quantitatives seront intégrées pour prédire la défaillance en fonction du taux de contrainte. La bourse permettra d’innover dans le domaine de la méthodologie industrielle de test structurel, de certification et de validation.
Objectif
The application for a Marie Curie IF covers the personal development of the ER by providing the steps necessary to establish an independent researcher status by the end of the fellowship. The main vehicle for this is a program of novel research that develops the experience already gained in the experimental and computational solid mechanics and materials characterization. The IF proposal builds on the expertise at the University of Southampton, where the ER will be based. The research covers the development of understanding and accrual of knowledge on the behaviour of fibre reinforced polymer (FRP) composite materials, which are crucial to address current need to produce lighter, more fuel efficient and sustainable structures for transportation. The mechanical behaviour of FRP is strain-rate dependent and a full understanding of this behavior has proved elusive. There are numerous engineering applications where high strain rate impact damage can lead to loss of structural integrity, so obtaining a better understanding this behaviour is essential for efficient design. New full-eld imaging approaches are increasingly used for the detection and analysis of damage in composites. The objective of the research program is to develop and verify a new methodology where integrated thermomechanical full-field high fidelity measures of stress and strain are provided experimentally. The research will for the first time provide quantitative inputs to models to inform designs and predict failure under high strain rate events through and experimentally derived damage index to determine structural performance. The fellowship contains significant technology transfer through industrial collaborations and secondment to industry. The industrial interactions will enable the methodology to be applied at a structural scale and bring about a key element on the pathway to revolutionise traditional approaches to structural testing, certification and validation.
Champ scientifique
Programme(s)
Régime de financement
MSCA-IF-EF-ST - Standard EFCoordinateur
BS8 1QU Bristol
Royaume-Uni