European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Inverted core/shell Nanocrystals: the future Nanomaterial for the Visualization of Neuron activity

Descripción del proyecto

Nanocristales semiconductores no tóxicos estimulan y registran la actividad neuronal

La capacidad de «ver» a gran escala la actividad dinámica de las neuronas y sus redes es una herramienta importante que complementa los métodos bien establecidos de registro de la tensión y la corriente electrofisiológica. La nanotecnología ha permitido realizar avances en los métodos ópticos. Por ejemplo, los nanocristales semiconductores con puntos cuánticos como sensores fluorescentes de la tensión se han utilizado con éxito para determinar cambios de tensión en las neuronas con una precisión temporal muy elevada. Los puntos cuánticos de cadmio fueron una de las primeras aplicaciones comercializadas, pero el cadmio puede resultar tóxico para las células. El proyecto iNano, financiado con fondos europeos, está desarrollando nuevos nanocristales semiconductores a partir de fosfuro de indio, que es inocuo y de alto rendimiento, para alcanzar las neuronas y «activarlas».

Objetivo

"The main goal of the iNano project is the development of a new synthesis approach for Indium phosphide (InP)-based semiconductor nanocrystals (NCs), which will be used to record and stimulate neuron activity in dorsal root ganglion (DRG) neuron cells.
Although Cd-based NCs are well studied, their application in commercial products is hampered by the presence of the toxic heavy metal ion cadmium. Due to similar optical properties InP NCs are a promising alternative but still facing three major challenges in their synthesis: i) polydispersity, ii) NCs with PL in the NIR region and iii) synthesis of multidimensional NCs. In the iNano project a new synthesis protocol will be established based on a seeded-growth method, which will allow the preparation of monodisperse isotropic and for the first time also of anisotropic InP based NCs. This will be possible by the use of heteroelement seeds (zinc chalcogenides), whose structures govern the InP growth kinetics and shape. The dependency of the PL on the thickness of the InP layer will allow to push the PL to the NIR. By in depth photophysical characterization on the ensemble and single-particle level and also regarding their non-linear properties, unique insights will be gained leading to a better understanding of the optoelectronic transitions and the influence of the shape on the optical properties.
iNano will shed a first light into the versatility of the InP NCs for neuroscience, investigating their performance under one-photon and multiphoton excitation to record and stimulate neuron activity. Due to the higher voltage sensitivity, better chemical stability, and negligible photobleaching effects, these nanomaterials are more attractive than up to know used tools for the measurement of the electric field generated by an action potential. The lower toxicity of the InP NCs will making the here developed protocols of high interest to neuroscientist and for the Eu initiative ""Human Brain Project""."

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUEFUNG
Aportación neta de la UEn
€ 162 806,40
Dirección
Unter den Eichen 87
12205 Berlin
Alemania

Ver en el mapa

Región
Berlin Berlin Berlin
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 162 806,40