Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Learning Generative 3D Scene Models for Training and Validating Intelligent Systems

Descripción del proyecto

Entrenar a los ordenadores para ver

La visión artificial es un campo del conocimiento encuadrado dentro de la inteligencia artificial (IA). El objetivo de la visión artificial es proporcionar a las máquinas una comprensión visual de su entorno, permitiendo así a los ordenadores identificar objetos a partir de imágenes y vídeos de la misma forma en la que lo hacen las personas. La mayoría de los avances recientes en visión artificial se fundamentan en técnicas de aprendizaje automático, que aprenden representaciones visuales a partir de grandes conjuntos de datos humanos anotados. Sin embargo, el etiquetado de datos para el entrenamiento de modelos de aprendizaje profundo es caro y los simuladores fotorrealistas existentes no proporcionan la variedad y la fidelidad necesarias. El proyecto LEGO-3D, financiado con fondos europeos, abordará este problema mediante el desarrollo de modelos probabilísticos capaces de sintetizar escenas tridimensionales junto con proyecciones fotorrealistas bidimensionales a partir de puntos de vista arbitrarios y con un control total sobre los elementos de la escena. Diseñará algoritmos para la descomposición automática de escenas reales y artificiales en representaciones tridimensionales latentes que capturen la geometría, el material, la luz y el movimiento.

Objetivo

Recently, the field of computer vision has witnessed a major transformation away from expert designed shallow models towards more generic deep representation learning. However, collecting labeled data for training deep models is costly and existing simulators with artist-designed scenes do not provide the required variety and fidelity. Project LEGO-3D will tackle this problem by developing probabilistic models capable of synthesizing 3D scenes jointly with photo-realistic 2D projections from arbitrary viewpoints and with full control over the scene elements. Our key insight is that data augmentation, while hard in 2D, becomes considerably easier in 3D as physical properties such as viewpoint invariances and occlusion relationships are captured by construction. Thus, our goal is to learn the entire 3D-to-2D simulation pipeline. In particular, we will focus on the following problems:

(A) We will devise algorithms for automatic decomposition of real and synthetic scenes into latent 3D primitive representations capturing geometry, material, light and motion.

(B) We will develop novel probabilistic generative models which are able to synthesize large-scale 3D environments based on the primitives extracted in project (A). In particular, we will develop unconditional, conditioned and spatio-temporal scene generation networks.

(C) We will combine differentiable and neural rendering techniques with deep learning based image synthesis, yielding high-fidelity 2D renderings of the 3D representations generated in project (B) while capturing ambiguities and uncertainties.

Project LEGO-3D will significantly impact a large number of application areas. Examples include vision systems which require access to large amounts of annotated data, safety-critical applications such as autonomous cars that rely on efficient ways for training and validation, as well as the entertainment industry which seeks to automate the creation and manipulation of 3D content.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-STG - Starting Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2019-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

EBERHARD KARLS UNIVERSITAET TUEBINGEN
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 467 500,00
Dirección
GESCHWISTER-SCHOLL-PLATZ
72074 Tuebingen
Alemania

Ver en el mapa

Región
Baden-Württemberg Tübingen Tübingen, Landkreis
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 467 500,00

Beneficiarios (1)

Mi folleto 0 0