Project description
Finding out if more is better when it comes to copies of the entire genome
Our cells multiply and divide continuously. Somatic (non-sex) cells undergo mitosis. The chromosomes are duplicated, the cell divides and one copy of the genome is passed to each of two daughter cells. This maintains the number of chromosomes (diploid number). Polyploidy, also called whole genome duplication (WGD), is not associated with cell division. It is widespread among eukaryotes and considered a major force in evolution and species diversification. However, a clear link between WGD and the increased complexity of organisms has been elusive, and it is not certain whether WGD is beneficial or detrimental on the whole. The EU-funded DOUBLE ADAPT project is studying whether WGD promotes adaptation in a variety of naturally polyploid plant species. Genomics studies in natural and manipulated populations could shed light on adaptive mechanisms relevant to survival in the face of climate change.
Objective
Whole genome duplication (WGD, polyploidization) is arguably the most massive genome-wide mutation whose ubiquity across eukaryotes suggests an adaptive benefit, though no mechanism has been identified. Consequently, a large controversy dominates the field whether WGD represents net benefit or detriment to evolutionary success.
I will test if WGD promotes adaptation in natural populations and address the underlying mechanism by estimating net fitness benefit of WGD vs. the role of post-WGD accumulation of adaptive variation. This question has not been satisfactorily addressed before because experimental studies of WGD were disconnected from field surveys and population genomics avoided complex polyploid genomes. Only recently, we have shown a proof-of-concept that WGD can increase the capacity of populations to accumulate adaptive variation in wild Arabidopsis. Yet the underlying mechanism still remains unknown.
I will address the adaptive consequences of WGD over a hierarchy of levels: genome, phenotype, population and species. In six naturally ploidy-variable plant species I plan to test if
(i) natural polyploid populations accumulate larger adaptive variation than diploids
(ii) WGD per se or post-WGD evolution brings important adaptive novelties
(iii) rates of positive selection increase after WGD
To achieve these goals, I will combine ecological genomics of natural populations with evolve-and-resequence experiments. To move beyond single-species correlative studies, I will manipulate the mutation itself via synthesis of neo-polyploid individuals and populations in six species. Then I will compare adaptation signals in genomes and phenotypes of synthetic polyploids and their natural diploid and tetraploid relatives.
This project will determine the adaptive value of WGD, an important force in evolution and crop domestication, with the ambition to improve our understanding of the role of large genomic mutations in natural selection and adaptation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics mutation
- agricultural sciences agriculture, forestry, and fisheries agriculture
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
116 36 Praha 1
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.