Descripción del proyecto
Desarrollo de micropeines para unos dispositivos de tiempo de precisión
El establecimiento preciso de la hora es esencial para las tecnologías avanzadas que dependen de estándares de frecuencia y de tiempo, como internet y los GPS. Sin embargo, la precisión actual sigue siendo limitada, lo que entorpece los avances hacia tecnologías revolucionarias. Los relojes atómicos ópticos basados en peines de frecuencias ópticas se erigen como la única solución que puede proporcionar una precisión horaria de hasta 10^ (-18) segundos y se considera que la producción de dichos relojes a escala portátil lo transformará todo. Sin embargo, unos relojes atómicos prácticos requieren fuentes ópticas precisas y dependen de enormes láseres impulsados que no resultan fiables en el ámbito de las aplicaciones portátiles. El proyecto TeLSCombe, financiado con fondos europeos, propone un plan basado en la tecnología más avanzada para desarrollar micropeines con una capacidad de control que supera la de las soluciones en miniatura existentes.
Objetivo
Precise timing has led to many advances, such as GPS and the Internet, which depend critically on frequency and time standards. The currently limited accuracy, however, is hindering the progress towards societal-changing technologies such as telecommunications beyond 5G or precise earth mapping.
Optical atomic clocks based on optical frequency combs – Nobel prize in Physics, 2005 to Hall and Hänsch – are the only technology capable of providing timing accurate up to 10^(-18) seconds, answering such a demand of time precision. The realisation of such clocks in portable scale is expected to change the technology landscape.
Micro-combs – based on miniature optical resonators – have galvanized the attention of the world over the past ten years with the promise to realise the full potential of frequency combs in a compact form.
However, these devices still do not meet the demand of practical atomic clocks which require reliable optical sources and currently depend on bulky pulsed lasers, which are well-known for their robustness but unfit for portable applications.
Developing energy-efficient micro-combs with the reliability and versatility of control of modern pulsed lasers will require to surpass the intrinsic limitations of the nonlinear physics exploited so far for their generation.
Here we propose a high-gain/ high-risk research plan which steers from the state-of-the-art and builds on a different physics for developing micro-combs with control capabilities beyond the current miniature solutions.
Specifically, we will exploit the generation of localised waves called temporal laser cavity-solitons in complex resonators exhibiting lasing and parametric nonlinear interactions. Such a setting is mostly unexplored and this proposal will demonstrate the unique features of these waves and their general impact in broader physics. Eventually, this study will pave the way to a class of robust micro-combs which can be controlled with user-friendly machine learning approaches.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesinformática y ciencias de la informacióninternet
- ciencias naturalesciencias físicasópticafísica del láser
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
LE11 3TU Loughborough
Reino Unido