Descripción del proyecto
Arquitectura a nanoescala para mejorar la recolección de energía
La energía térmica y solar, así como el movimiento del cuerpo, son fuentes de energía que pueden ser aprovechadas empleando tecnología avanzada, lo que evita la necesidad de recargar las baterías. Estas fuentes locales de energía ambiental pueden ser capturadas y almacenadas. Con todo, su baja intensidad y su naturaleza intermitente reduce la recuperación de energía mediante dispositivos a microescala, lo que pone de relieve la necesidad de desarrollar un recolector de energía procedente de múltiples fuentes. Los métodos existentes combinan diferentes recolectores monofuente en un dispositivo o utilizan materiales multifuncionales para convertir simultáneamente varias fuentes de energía en electricidad. El proyecto 3DScavengers, financiado con fondos europeos, brinda una tecnología compacta basada en la arquitectura a nanoescala de materiales tridimensionales multifuncionales para llenar el vacío entre los dos métodos existentes. Estas nanoarquitecturas podrán recolectar energía de forma simultánea e individual a partir de la luz, el movimiento y los cambios de temperatura. El objetivo final de 3DScavengers es emplear un método escalable y respetuoso con el medio ambiente basado en un reactor de plasma y vacío para la síntesis de esta generación avanzada de nanomateriales.
Objetivo
Imagine a technology for powering your smart devices by recovering energy from lights in your office, the random movements of your body while reading these lines or from small changes in temperature when you breathe or go out for a walk. This very technology will provide energy for wireless sensor networks monitoring the air in your city or the structural stability of buildings and large constructions remotely and sustainably, avoiding battery recharging or even replacing them. These are the challenges in micro energy harvesting from (local) ambient sources.
Kinetic, thermal and solar energies are ubiquitous at our surroundings under diverse forms, but their relatively low intensity and intermittent availability limit their potential recovery by microscale devices. These restrictions call for multi-source energy harvesters working under two principles: 1) combining different single-source harvesters in one device, or 2) using multifunctional materials capable of simultaneously converting various energy sources into electricity. In 1), efficiency per unit volume can decrease compared to the individual counterparts; in 2), materials as semiconductors, polymeric and oxide ferroelectrics and hybrid perovskites may act as multisource harvesters but huge advances are required to optimize their functionalities and sustainable fabrication at large scale.
I propose to fill the gap between these approaches offering an all-in-one solution to multisource energy scavenging, based on the nanoscale design of multifunctional three-dimensional materials. The demonstration of an industrially scalable one-reactor plasma/vacuum method will be crucial to integrate hybrid-scavenging components and to provide 3DScavengers materials with tailored microstructure-enhanced performance.
My ultimate goal is to build nanoarchitectures for simultaneous and enhanced individual scavenging applying photovoltaic, piezo- and pyro-electric effects, minimizing the environmental cost of their synthesis
Ámbito científico
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorssmart sensors
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
28006 Madrid
España