Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Sterile neutrino search in tritium beta decay

Descripción del proyecto

Mejora de la búsqueda neutrinos estériles

La materia oscura se refiere a cualquier sustancia que interactúa predominantemente a través de la gravedad con la materia visible, que incluye estrellas y planetas. La sustancia representa aproximadamente el 85 % de la materia del universo y casi una cuarta parte de su densidad de energía total. Los neutrinos estériles con masa de kilo electrón-voltio (keV) son los principales candidatos para materia oscura. El proyecto financiado con fondos europeos SENSE tiene como objetivo investigar la existencia de neutrinos estériles eV-keV en un experimento de laboratorio con una sensibilidad pionera en el mundo. El elemento central de la búsqueda es la espectroscopia beta de alta precisión. La idea novedosa del proyecto consiste en desarrollar un sistema de detectores de deriva de silicio que vaya más allá del estado actual de la técnica, y que, combinado con el experimento a gran escala de Karlsruhe Tritium Neutrino (Katrin), abra la ventana a señales de neutrinos estériles no accesibles en ningún otro lugar.

Objetivo

What is the nature of Dark Matter? What is the origin of the neutrino mass? These are two of the most compelling mysteries, physics is facing today. Despite its tremendous success, the Standard Model of Particle Physics does not provide an answer to these questions.
Since the Nobel-prize awarded discovery of the neutrino oscillations, which proofs that neutrinos have a mass, the existence of right-handed partners to the known left-handed neutrinos is a basic assumption. This minimal extension of the Standard Model provides a natural mechanism to generate neutrino masses and can lead to the existence of new types of neutrinos, so-called sterile neutrinos.
With a mass in the kilo-electron-volt (keV) regime, sterile neutrinos are a prime dark matter candidate. This dark matter type is especially appealing as it can act as warm dark matter, the existence of which would mitigate problems in our understanding of large-scale structures in the cosmos. The existence of sterile neutrinos with a mass in the eV-volt (eV) regime can resolve puzzling experimental anomalies observed in short-baseline neutrino oscillation experiments.
With SENSE, I aim to probe the existence of eV – keV sterile neutrino in a laboratory-based experiment with world-leading sensitivity. A unique way to perform this search is via high-precision beta spectroscopy. The novel idea of SENSE is to develop a beyond-the-state-of-the-art Silicon-Drift-Detector system, which, combined with the large-scale Karlsruhe Tritium Neutrino (Katrin) experiment, will open the window to sterile neutrino signals not accessible elsewhere.
My role as analysis coordinator of the Katrin experiment and the expertise in semi-conductor detector technology of my independent Max-Planck-Research group put me in the ideal position to conduct this ambitious research project.
The discovery of sterile neutrinos would be a breakthrough in science with far-reaching consequences for our understanding of matter and the universe.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

TECHNISCHE UNIVERSITAET MUENCHEN
Aportación neta de la UEn
€ 978 564,00
Dirección
Arcisstrasse 21
80333 Muenchen
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 978 564,00

Beneficiarios (2)