European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Thermophone - a novel heat transfer based approach to global TOnal Noise cancellation in aviation

Description du projet

Réduction active du bruit dans l’aviation grâce à des transducteurs thermo-acoustiques (à base de chaleur)

Le bruit des avions est la cause première des réactions négatives des communautés face à l’exploitation et à l’expansion des aéroports. Parmi les différentes composantes du bruit, le contenu tonal est le plus important avec en premier lieu l’aéroacoustique de l’interaction rotor/stator au niveau du ventilateur du moteur. Les méthodes actuelles de réduction du bruit passives seules ne sont pas suffisantes pour se conformer aux réglementations de plus en plus strictes sur les émissions de bruit. Le projet ThermoTON financé par l’UE mène des recherches portant sur l’annulation active des bruits de l’aviation sur la base de la création d’ondes de pression d’amplitude et de fréquence égales, en phase opposée avec la perturbation sonore d’origine. Cette technologie clé repose sur un émetteur de son (thermophone) comprenant une fine couche chauffée périodiquement déposée directement sur des turbomachines sans modifications géométriques.

Objectif

Limiting the number of people affected by significant aircraft noise is one of the most important tasks of modern civil aviation. Among different contributors, tonal noise is the most important due to regulatory definitions and its attenuation characteristics, with the largest contributor being the fan aero-acoustics. Current passive noise reduction methods alone are insufficient to conform with the increasingly stringent noise emission regulations. This motivates our research in active noise cancellation, based on creation of equal amplitude and frequency pressure waves, in opposite phase to the disturbance. Having identified that the actuator technology is the main hindrance against hardware implementation in flying platforms, we have been investigating a revolutionary technology based on a truly static and surface-deposited sound emitter (thermophone), which creates pressure fields by thermo-acoustic effects rather than the vibro-acoustics utilized by common speakers. Comprising of a periodically Joule heated electrically conductive thin layer, a highly efficient thermophone requires modeling of non-Fourier heat conduction in deposits.
The project is divided into 4 multi-disciplinary objectives:
1. Derivation of accurate macro-scale heat conduction model, including non-Fourier effects
2. Developing thermophone performance model by analyzing thermo-acoustic effect
3. Optimization of performance by material and geometric selection, and by manufacturing processes
4. Demonstrating aero-acoustic fan noise cancelation via the thermo-acoustic effect created by static heat flux transducer
In addition to the significance that this project will have to the field of aviation, I strongly believe that successful completion of each work package will provide dramatic improvements over the state of the arts in conduction heat transfer modelling, consumer electronics such as speakers, manufacturing methods for thermo-acoustic devices, and active aero-acoustic noise cancellation.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contribution nette de l'UE
€ 1 993 265,00
Adresse
SENATE BUILDING TECHNION CITY
32000 Haifa
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 993 265,00

Bénéficiaires (1)