Project description
Artificial neural networks shed light on quantum many-body dynamics
A key scope of quantum many-body theory is the identification of universal behaviour in quantum matter. In recent years, the quest for phases with novel universal properties has been revolutionised by forcing systems out of equilibrium, which has opened a universe of unexplored phenomena and new dynamical paradigms. However, the theoretical description of such non-equilibrium quantum states has remained a key challenge. The central goal of the EU-funded mlQuDyn project is to make progress at this intriguing frontier, using a cross-disciplinary approach at the interface between quantum many-body theory and machine learning. The enhanced understanding obtained within this research programme will provide insights into fundamental open questions concerning the theoretical understanding of quantum many-body systems as well as enhance the predictive power of quantum theory for experiments.
Objective
A key scope of quantum many-body theory is the identification of universal behavior in quantum matter, where macroscopic properties become independent of microscopic details. In recent years the quest for phases with novel universal properties has been revolutionized by forcing systems out of equilibrium, which has opened up a universe of unexplored phenomena and new dynamical paradigms. These developments not only hold the promise to theoretically uncover unrecognized universal dynamical behavior, but are also driven by the enormous advances in quantum simulators such as ultra-cold atoms, which have nowadays achieved unique capabilities in generating and probing such nonequilibrium quantum states. Still, their theoretical description is facing severe challenges. It is the aim of this proposal to take the theoretical understanding and predictive power of quantum many-body theory to a new level by an crossdisciplinary approach at the interface between quantum dynamics and machine learning.
The central element of this approach is to encode time-evolved quantum states into artificial neural networks, which have been remarkably successful in storing and recognizing complex structures in computer science. In order to reach the main goal we have identified three main challenges which form the core of the program: (i) to design efficient artificial network structures based on fundamental principles of quantum many-body systems such as locality and causality; (ii) to utilize concepts of many-body theory and statistical physics to understand the physical properties of artificial neural networks; (iii) to explore fundamental but yet inaccessible dynamical quantum phenomena and universal behavior in quantum dynamics. The successfully conducted research program will lift the description and understanding of quantum many-body dynamics to a new level, impacting significantly both quantum theory as well as future experiments.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
86159 Augsburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.