Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Machine learning quantum dynamics

Description du projet

Des réseaux de neurones artificiels apportent un éclairage sur la dynamique quantique à N corps

Une importante priorité de la théorie quantique à N corps est l’identification du comportement universel dans la matière quantique. Ces dernières années, la recherche de phases dotées de nouvelles propriétés universelles a connu une révolution en déséquilibrant les systèmes, ce qui a ouvert la voie à un univers de phénomènes inexplorés et à de nouveaux paradigmes dynamiques. Toutefois, la description théorique de ces états quantiques hors équilibre demeure un défi important à relever. L’objectif central du projet mlQuDyn, financé par l’UE, consiste à réaliser des avancées à cette frontière intrigante, en recourant à une approche transdisciplinaire à l’intersection de la théorie quantique à N corps et de l’apprentissage automatique. Les résultats de ce programme de recherche permettront d’interpréter les questions fondamentales ouvertes relatives à la compréhension théorique des systèmes quantiques à N corps et amélioreront le pouvoir de prédiction de la théorie quantique pour les expériences.

Objectif

A key scope of quantum many-body theory is the identification of universal behavior in quantum matter, where macroscopic properties become independent of microscopic details. In recent years the quest for phases with novel universal properties has been revolutionized by forcing systems out of equilibrium, which has opened up a universe of unexplored phenomena and new dynamical paradigms. These developments not only hold the promise to theoretically uncover unrecognized universal dynamical behavior, but are also driven by the enormous advances in quantum simulators such as ultra-cold atoms, which have nowadays achieved unique capabilities in generating and probing such nonequilibrium quantum states. Still, their theoretical description is facing severe challenges. It is the aim of this proposal to take the theoretical understanding and predictive power of quantum many-body theory to a new level by an crossdisciplinary approach at the interface between quantum dynamics and machine learning.

The central element of this approach is to encode time-evolved quantum states into artificial neural networks, which have been remarkably successful in storing and recognizing complex structures in computer science. In order to reach the main goal we have identified three main challenges which form the core of the program: (i) to design efficient artificial network structures based on fundamental principles of quantum many-body systems such as locality and causality; (ii) to utilize concepts of many-body theory and statistical physics to understand the physical properties of artificial neural networks; (iii) to explore fundamental but yet inaccessible dynamical quantum phenomena and universal behavior in quantum dynamics. The successfully conducted research program will lift the description and understanding of quantum many-body dynamics to a new level, impacting significantly both quantum theory as well as future experiments.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-STG - Starting Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2019-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITAET AUGSBURG
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 058 271,16
Adresse
UNIVERSITAETSSTRASSE 2
86159 Augsburg
Allemagne

Voir sur la carte

Région
Bayern Schwaben Augsburg, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 058 271,16

Bénéficiaires (1)

Mon livret 0 0