Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

innovative MachIne leaRning to constrain Aerosol-cloud CLimate Impacts (iMIRACLI)

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Synopsis of causal attribution for cloud changes (se abrirá en una nueva ventana)

A publication or report jointly written by all contributors to WP2, including the machine-learning-centred ESRs, that discusses and quantifies which aspects of cloud/precipitation changes are attributable to aerosol perturbations, and how these can be identified (lead: SU, contribu-tors: UOXF, ULEI, UCL, DLR).

Causal discovery in the presence of multiple time scales (se abrirá en una nueva ventana)

A publication or PhD thesis chapter introducing a novel causal inference technique for time series with interdependencies across multiple time scales (lead: DLR, contributors: UVEG, ETHZ).

Synopsis of aerosol effects on climate (se abrirá en una nueva ventana)

A publication or report jointly written by all contributors to WP3, that summarizes detectable aspects of 20th century climate change that are attributable to aerosol emissions, including progress from machine learning techniques (lead: UEDIN, contributors: SU, ETHZ, DLR, UVEG, EPFL).

Impact of sampling bias on detection/attribution (se abrirá en una nueva ventana)

A publication or PhD thesis chapter explaining the impact of the aerosol-precipitation sampling bias on observed aerosol-precipitation rela-tions (lead: ETHZ, task 3.3)

Synopsis of aerosol-cloud effect detection (se abrirá en una nueva ventana)

A publication or report jointly written by all contributors to WP1, that summarizes the possibility to detect an aerosol-cloud interaction signal in observations (lead: ULEI, contributors: UCL, ETHZ, SU).

Volcanic signal in cirrus (se abrirá en una nueva ventana)

A publication or PhD thesis chapter on the possibility to detect a significant perturbation of cirrus after a volcanic eruption (lead: ETHZ, task 1.2)

Machine learning challenges for noisy and heterogeneous climate datasets (se abrirá en una nueva ventana)

A publication or report written by the contributors to WP4 and WP1 targeting a machine learning audience to raise awareness about the par-ticular (deep) machine learning challenges of climate datasets. (lead: UCL, contributors: ULEI, SU).

Aerosol effects on cloud fraction (se abrirá en una nueva ventana)

A publication or PhD thesis chapter explaining causal effects of aerosol perturbations on cloud changes (lead: UOXF, task 2.1)

Quarterly iMIRACLI newsletters (se abrirá en una nueva ventana)
Complexity reduction using δ-MAPS (se abrirá en una nueva ventana)

A publication or PhD thesis chapter explaining the reduction of highly complex and multidimentional global climate data into vastly simpli-fied dynamic network representation (lead: EPFL, task 3.2)

Deep learning for inference and prediction in multimodal climate data (se abrirá en una nueva ventana)

A publication or PhD thesis chapter reporting about novel deep learning techniques for inference and prediction for noisy multimodal climate datasets (lead: UCL, contributors: ULEI)

Physics-aware and explainable machine learning for satellite retrievals (se abrirá en una nueva ventana)

A publication and PhD thesis chapter introducing a novel ML approach for parameter retrievals that respect physics laws and attains ex-plainable models (lead: UVEG, contributors: ETHZ)

Aerosol-cloud fingerprints in radiances (se abrirá en una nueva ventana)

A publication or PhD thesis chapter reporting about the detectability of aerosol-cloud interaction processes in satellite-observations space (lead: ULEI, task 1.1)

Publications in scientific journals, including iMIRACLI special issue (se abrirá en una nueva ventana)

Publications in scientific journals, including iMIRA-CLI special issue

Aerosol effects on 20th century climate (se abrirá en una nueva ventana)

A publication or PhD thesis chapter reporting about the signals in 20th and early 21rst century temperature and precipitation evolution at-tributable to anthropogenic aerosol (lead: UEDIN, task 3.1)

Cloud effects on aerosol (se abrirá en una nueva ventana)

A publication or PhD thesis chapter summarizing the net effect of cloud sources/sinks on aerosol concentrations (lead: SU, task 1.3)

Locally adaptive predictive modelling for spatio-temporal climate datasets (se abrirá en una nueva ventana)

A publication or PhD thesis chapter introducing a novel approach for spatio-temporal modelling (lead: UOXF, contributors: MetOffice, Am-azon).

Aerosol influence on clouds in the Arctic (se abrirá en una nueva ventana)

A publication or PhD thesis chapter summarizing the influence of aerosols onArctic clouds and how to detect any influence using observa-tions (lead: SU, task 3.2)

Key drivers of aerosol-cloud dynamics (se abrirá en una nueva ventana)

A publication or PhD thesis chapter listing the key drivers for aerosol-cloud dynamics (lead: SU, task 2.3)

Causal inference in climate science (se abrirá en una nueva ventana)

A perspective paper written by the contributors to WP6 as well as the climate WPs on the challenges of causal inference for climatological datasets (lead: DLR, contributors UVEG, ETHZ, UEDIN, UOXF)

Separability of aerosol-cloud effects by regimes (se abrirá en una nueva ventana)

A publication or PhD thesis chapter explaining how cloud regimes should optimally be defined to assess causal aerosol-cloud interactions (lead: ULEI, task 2.4, contributor: ETHZ)

Latent variable causal discovery for climate time series (se abrirá en una nueva ventana)

A publication or PhD thesis chapter introducing a novel causal inference technique for time series accounting for latent variables (lead: DLR, contributors: UOXF).

Predictive modelling for spatio-temporal data (se abrirá en una nueva ventana)

A publication or report written by the contributors to WP5 as well as the climate WPs discussing the challenges of predictive models for climatological datasets (lead: UVEG, contributors, UOXF, ULEI, MetOffice Amazon, UEDIN, ETHZ, DLR)

Isolating aerosol effects through observable analogues (se abrirá en una nueva ventana)

A publication or PhD thesis chapter on the attribution of cloud/precipitation changes to aerosol perturbations (lead: UOXF, task 2.2)

Publicaciones

Large uncertainty in future warming due to aerosol forcing (se abrirá en una nueva ventana)

Autores: Duncan Watson-Parris; Christopher J. Smith
Publicado en: Nature Climate Change, 2022, ISSN 1758-678X
Editor: Nature Publishing Group
DOI: 10.1038/s41558-022-01516-0

ClimateBench: A benchmark dataset for data-driven climate projections (se abrirá en una nueva ventana)

Autores: Duncan Watson-Parris, Yuhan Rao, Dirk Olivié, Øyvind Seland, Peer J Nowack, Gustau Camps-Valls, Philip Stier, Shahine Bouabid, Maura Dewey, Emilie Fons, Jessenia Margarita Marina Gonzalez, Paula Harder, Kai Jeggle, Julien Lenhardt, Peter Manshausen, Maria Novitasari, Lucile Ricard, Carla Roesch
Publicado en: Journal of Advances in Modeling Earth Systems, 2022, ISSN 1942-2466
Editor: American Geophysical Union
DOI: 10.1002/essoar.10509765.2

Shipping regulations lead to large reduction in cloud perturbations (se abrirá en una nueva ventana)

Autores: Duncan Watson-Parris, Matthew W. Christensen, Angus Laurenson, Daniel Clewley, Edward Gryspeerdt, Philip Stier
Publicado en: Proceedings of the National Academy of Sciences, Edición 119, 2023, ISSN 0027-8424
Editor: National Academy of Sciences
DOI: 10.1073/pnas.2206885119

Assessing California Wintertime Precipitation Responses to Various Climate Drivers (se abrirá en una nueva ventana)

Autores: Robert J. Allen, Jean‐Francois Lamarque, Duncan Watson‐Parris, Dirk Olivié
Publicado en: Journal of Geophysical Research: Atmospheres, Edición 125, 2023, ISSN 2169-897X
Editor: AGU
DOI: 10.1029/2019jd031736

Invisible ship tracks show large cloud sensitivity to aerosol (se abrirá en una nueva ventana)

Autores: Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, Philip Stier
Publicado en: Nature, 2022, ISSN 1476-4687
Editor: Nature Publishing Group
DOI: 10.1038/s41586-022-05122-0

Aerosol Forcing Masks and Delays the Formation of the North Atlantic Warming Hole by Three Decades (se abrirá en una nueva ventana)

Autores: Guy Dagan, Philip Stier, Duncan Watson‐Parris
Publicado en: Geophysical Research Letters, Edición 47, 2023, ISSN 0094-8276
Editor: American Geophysical Union
DOI: 10.1029/2020gl090778

Climate Impacts of COVID‐19 Induced Emission Changes (se abrirá en una nueva ventana)

Autores: A. Gettelman, R. Lamboll, C. G. Bardeen, P. M. Forster, D. Watson‐Parris
Publicado en: Geophysical Research Letters, Edición 48, 2023, ISSN 0094-8276
Editor: American Geophysical Union
DOI: 10.1029/2020gl091805

Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study (se abrirá en una nueva ventana)

Autores: Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay M. Damani, Kostas Eleftheriadis, Nikolaos Evangeliou, Gregory S. Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbign
Publicado en: Atmospheric Chemistry and Physics, 2022, ISSN 1680-7324
Editor: EGU
DOI: 10.5194/acp-2021-975

Strong control of effective radiative forcing by the spatial pattern of absorbing aerosol (se abrirá en una nueva ventana)

Autores: Andrew Williams, Philip Stier, Guy Dagan, Duncan Watson-Parris
Publicado en: Nature Climate Change, Edición 12, 2022, Página(s) 735-742, ISSN 1758-6798
Editor: Nature
DOI: 10.21203/rs.3.rs-1015938/v1

The Global Atmosphere‐aerosol Model ICON‐A‐HAM2.3–Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness (se abrirá en una nueva ventana)

Autores: M. Salzmann, S. Ferrachat, C. Tully, S. Münch, D. Watson‐Parris, D. Neubauer, C. Siegenthaler‐Le Drian, S. Rast, B. Heinold, T. Crueger, R. Brokopf, J. Mülmenstädt, J. Quaas, H. Wan, K. Zhang, U. Lohmann, P. Stier, I. Tegen
Publicado en: Journal of Advances in Modeling Earth Systems, Edición 14, 2023, ISSN 1942-2466
Editor: American Geophysical Union
DOI: 10.1029/2021ms002699

Aerosol optical depth disaggregation: toward global aerosol vertical profiles (se abrirá en una nueva ventana)

Autores: Shahine Bouabid, Duncan Watson-Parris, Sofija Stefanović, Athanasios Nenes, Dino Sejdinovic
Publicado en: Environmental Data Science, Edición 3, 2024, ISSN 2634-4602
Editor: Cambridge University Press
DOI: 10.1017/eds.2024.15

Understanding cirrus clouds using explainable machine learning (se abrirá en una nueva ventana)

Autores: Kai Jeggle, David Neubauer, Gustau Camps-Valls, Ulrike Lohmann
Publicado en: Environmental Data Science, Edición 2, 2023, ISSN 2634-4602
Editor: Cambridge University Press
DOI: 10.1017/eds.2023.14

Sink, Source or Something In‐Between? Net Effects of Precipitation on Aerosol Particle Populations (se abrirá en una nueva ventana)

Autores: Théodore Khadir, Ilona Riipinen, Sini Talvinen, Dominic Heslin‐Rees, Christopher Pöhlker, Luciana Rizzo, Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Paulo Artaxo, Tuukka Petäjä, Markku Kulmala, Peter Tunved, Annica M. L. Ekman, Radovan Krejci, Annele Virtanen
Publicado en: Geophysical Research Letters, Edición 50, 2024, ISSN 0094-8276
Editor: American Geophysical Union
DOI: 10.1029/2023gl104325

Stratocumulus adjustments to aerosol perturbations disentangled with a causal approach (se abrirá en una nueva ventana)

Autores: Emilie Fons, Jakob Runge, David Neubauer, Ulrike Lohmann
Publicado en: npj Climate and Atmospheric Science, Edición 6, 2023, ISSN 2397-3722
Editor: Nature
DOI: 10.1038/s41612-023-00452-w

Rapid saturation of cloud water adjustments to shipping emissions (se abrirá en una nueva ventana)

Autores: Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, Philip Stier
Publicado en: Atmospheric Chemistry and Physics, Edición 23, 2023, Página(s) 12545-12555, ISSN 1680-7324
Editor: EGU
DOI: 10.5194/acp-23-12545-2023

Aerosol absorption in global models from AeroCom Phase III (se abrirá en una nueva ventana)

Autores: Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, Duncan Watson-Parris
Publicado en: Atmospheric Chemistry and Physics, Edición 21, 2021, ISSN 1680-7324
Editor: EGU
DOI: 10.5194/acp-2021-51

Machine learning for weather and climate are worlds apart (se abrirá en una nueva ventana)

Autores: D. Watson-Parris
Publicado en: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Edición 379, 2024, Página(s) 20200098, ISSN 1364-503X
Editor: Royal Society of London
DOI: 10.1098/rsta.2020.0098

Physics-informed learning of aerosol microphysics (se abrirá en una nueva ventana)

Autores: Paula Harder, Duncan Watson-Parris, Philip Stier, Dominik Strassel, Nicolas R. Gauger, Janis Keuper
Publicado en: Environmental Data Science, Edición 1, 2022, ISSN 2634-4602
Editor: Cambridge University Press
DOI: 10.1017/eds.2022.22

On the Contribution of Fast and Slow Responses to Precipitation Changes Caused by Aerosol Perturbations (se abrirá en una nueva ventana)

Autores: Shipeng Zhang, Philip Stier, Duncan Watson-Parris
Publicado en: Atmospheric Chemistry and Physics, Edición 21, 2021, ISSN 1680-7324
Editor: EGU
DOI: 10.5194/acp-2020-1317

FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation (se abrirá en una nueva ventana)

Autores: Shahine Bouabid, Dino Sejdinovic, Duncan Watson‐Parris
Publicado en: Journal of Advances in Modeling Earth Systems, Edición 16, 2024, ISSN 1942-2466
Editor: American Geophysical Union
DOI: 10.1029/2023ms003926

Marine cloud base height retrieval from MODIS cloud properties using machine learning (se abrirá en una nueva ventana)

Autores: Julien Lenhardt, Johannes Quaas, Dino Sejdinovic
Publicado en: Atmospheric Measurement Techniques, Edición 17, 2024, Página(s) 5655-5677, ISSN 1867-8548
Editor: EGU
DOI: 10.5194/amt-17-5655-2024

Identifying climate model structural inconsistencies allows for tight constraint of aerosol radiative forcing (se abrirá en una nueva ventana)

Autores: Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, Ken S. Carslaw
Publicado en: Atmospheric Chemistry and Physics, Edición 23, 2023, Página(s) 8749-8768, ISSN 1680-7324
Editor: EGU
DOI: 10.5194/acp-23-8749-2023

Dependence of Fast Changes in Global and Local Precipitation on the Geographical Location of Absorbing Aerosol (se abrirá en una nueva ventana)

Autores: Andrew I. L. Williams, Duncan Watson-Parris, Guy Dagan, Philip Stier
Publicado en: Journal of Climate, Edición 36, 2023, Página(s) 6163-6176, ISSN 0894-8755
Editor: American Meteorological Society
DOI: 10.1175/jcli-d-23-0022.1

Causal inference for time series (se abrirá en una nueva ventana)

Autores: Jakob Runge, Andreas Gerhardus, Gherardo Varando, Veronika Eyring, Gustau Camps-Valls
Publicado en: Nature Reviews Earth & Environment, Edición 4, 2023, Página(s) 487-505, ISSN 2662-138X
Editor: Nature
DOI: 10.1038/s43017-023-00431-y

Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model (se abrirá en una nueva ventana)

Autores: Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, Ulrike Lohmann
Publicado en: Atmospheric Chemistry and Physics, Edición 24, 2024, Página(s) 8653-8675, ISSN 1680-7324
Editor: EGU
DOI: 10.5194/acp-24-8653-2024

Combining Temperature and Precipitation to Constrain the Aerosol Contribution to Observed Climate Change (se abrirá en una nueva ventana)

Autores: Carla M. Roesch, Andrew P. Ballinger, Andrew P. Schurer, Gabriele C. Hegerl
Publicado en: Journal of Climate, Edición 37, 2024, Página(s) 5211-5229, ISSN 0894-8755
Editor: American Meteorological Society
DOI: 10.1175/jcli-d-23-0347.1

Pollution tracker: Finding industrial sources of aerosol emission in satellite imagery (se abrirá en una nueva ventana)

Autores: Peter Manshausen, Duncan Watson-Parris, Lena Wagner, Pirmin Maier, Sybrand J. Muller, Gernot Ramminger and Philip Stier
Publicado en: Environmental Data Science, 2023, ISSN 2634-4602
Editor: Cambridge University Press
DOI: 10.1017/eds.2023.20

Exploring Randomly Wired Neural Networks for Climate Model Emulation (se abrirá en una nueva ventana)

Autores: William Yik, Sam J. Silva, Andrew Geiss, Duncan Watson-Parris
Publicado en: Artificial Intelligence for the Earth Systems, Edición 2, 2024, ISSN 2769-7525
Editor: American Meteorological Society
DOI: 10.1175/aies-d-22-0088.1

Model calibration using ESEm v1.0.0 – an open, scalable Earth System Emulator (se abrirá en una nueva ventana)

Autores: Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, Philip Stier
Publicado en: Geoscientific Model Development, Edición 14, 2022, ISSN 1991-9603
Editor: EGU
DOI: 10.5194/gmd-2021-267

network-based constraint to evaluate climate sensitivity (se abrirá en una nueva ventana)

Autores: Lucile Ricard, Fabrizio Falasca, Jakob Runge, Athanasios Nenes
Publicado en: Nature Communications, Edición 15, 2024, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-024-50813-z

Causal Inference on Process Graphs, Part I: The Structural Equation Process Representation (se abrirá en una nueva ventana)

Autores: Nicolas-Domenic Reiter, Andreas Gerhardus, Jonas Wahl, Jakob Runge
Publicado en: arXiv, 2024
Editor: arXiv
DOI: 10.48550/arxiv.2305.11561

Causal Inference on Process Graphs, Part II: Causal Structure and Effect Identification (se abrirá en una nueva ventana)

Autores: Nicolas-Domenic Reiter, Jonas Wahl, Andreas Gerhardus, Jakob Runge
Publicado en: arXiv, 2024
Editor: arXiv
DOI: 10.48550/arxiv.2406.17422

Causal inference for temporal patterns (se abrirá en una nueva ventana)

Autores: Reiter, Nicolas-Domenic; Gerhardus, Andreas; Runge, Jakob
Publicado en: arXiv publication, 2022
Editor: arXiv Cornell University
DOI: 10.48550/arxiv.2205.15149

Asymptotic Uncertainty in the Estimation of Frequency Domain Causal Effects for Linear Processes (se abrirá en una nueva ventana)

Autores: Nicolas-Domenic Reiter, Jonas Wahl, Gabriele C. Hegerl, Jakob Runge
Publicado en: arXiv, 2024
Editor: arXiv
DOI: 10.48550/arxiv.2406.18191

IceCloudNet: Cirrus and mixed-phase cloud prediction from SEVIRI input learned from sparse supervision (se abrirá en una nueva ventana)

Autores: Jeggle, Kai; Czerkawski, Mikolaj; Serva, Federico; Saux, Bertrand Le; Neubauer, David; Lohmann, Ulrike
Publicado en: Tackling Climate Change with Machine Learning: workshop at NeurIPS 2023, Edición 1, 2023
Editor: NeurIPS
DOI: 10.48550/arxiv.2310.03499

Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific (se abrirá en una nueva ventana)

Autores: Jesson, Andrew; Manshausen, Peter; Douglas, Alyson; Watson-Parris, Duncan; Gal, Yarin; Stier, Philip
Publicado en: Tackling Climate Change with Machine Learning: workshop at NeurIPS 2021, 2021
Editor: NeurIPS
DOI: 10.48550/arxiv.2110.15084

Unleashing the Autoconversion Rates Forecasting: Evidential Regression from Satellite Data

Autores: Novitasari, Maria C and Quaas, Johannes and Rodrigues, Miguel
Publicado en: NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning, 2023
Editor: NeurIPS

Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions (se abrirá en una nueva ventana)

Autores: Jesson, Andrew; Douglas, Alyson; Manshausen, Peter; Solal, Maëlys; Meinshausen, Nicolai; Stier, Philip; Gal, Yarin; Shalit, Uri
Publicado en: 36th Conference on Neural Information Processing Systems (NeurIPS 2022), 2022
Editor: NeurIPS
DOI: 10.48550/arxiv.2204.10022

Deconditional Downscaling with Gaussian Processes (se abrirá en una nueva ventana)

Autores: Siu Lun Chau, Shahine Bouabid, Dino Sejdinovic
Publicado en: 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 2021
Editor: NeurIPS
DOI: 10.48550/arxiv.2105.12909

ALAS: Active Learning for Autoconversion Rates Prediction from Satellite Data

Autores: Maria C. Novitasari, Johannes Quaas, Miguel Rodrigues
Publicado en: Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, 2024
Editor: PMLR

Emulating Aerosol Microphysics with Machine Learning (se abrirá en una nueva ventana)

Autores: Harder, Paula; Watson-Parris, Duncan; Strassel, Dominik; Gauger, Nicolas; Stier, Philip; Keuper, Janis
Publicado en: ICML 2021 Workshop, Tackling Climate Change with Machine Learning, Edición 1, 2021
Editor: ICML
DOI: 10.48550/arxiv.2109.10593

Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge

Autores: Shahine Bouabid, Jake Fawkes, Dino Sejdinovic
Publicado en: Proceedings of the 40th International Conference on Machine Learning, 2023
Editor: ICML

Reconstructing Aerosols Vertical Profiles with Aggregate Output Learning (se abrirá en una nueva ventana)

Autores: Sofija Stefanovic, Shahine Bouabid, Philip Stier, Athanasios Nenes, Dino Sejdinovic
Publicado en: Tackling Climate Changewith Machine Learning Workshop at ICML 2021, Edición 2021, 2021
Editor: ICML
DOI: 10.31223/x5qw5s

Leveraging Machine Learning to Predict the Autoconversion Rates from Satellite Data

Autores: Maria C Novitasari, Johannes Quaas, Miguel Rodrigues
Publicado en: NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning, 2021
Editor: ClimateChangeAI

ALAS: Active Learning for Autoconversion Rates Prediction from Satellite Data

Autores: Maria C Novitasari, Johanness Quaas, Miguel Rodrigues
Publicado en: NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning, 2023
Editor: NeurIPS

NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations (se abrirá en una nueva ventana)

Autores: Harder, Paula; Jones, William; Lguensat, Redouane; Bouabid, Shahine; Fulton, James; Quesada-Chacón, Dánell; Marcolongo, Aris; Stefanović, Sofija; Rao, Yuhan; Manshausen, Peter; Watson-Parris, Duncan
Publicado en: Tackling Climate Change with Machine Learning workshop at NeurIPS 2020., Edición 1, 2020
Editor: NeurIPS
DOI: 10.48550/arxiv.2011.07017

Cirrus formation regimes – Data driven identification and quantification of mineral dust effect (se abrirá en una nueva ventana)

Autores: Kai Jeggle, David Neubauer, Hanin Binder, Ulrike Lohmann
Publicado en: Atmospheric Chemistry and Physics Discussions, 2024, ISSN 1680-7375
Editor: Copernicus GmbH
DOI: 10.5194/egusphere-2024-2559

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0