Description du projet
Améliorer les performances et la sécurité des batteries lithium-ion
La demande énergétique mondiale en forte croissance stimule l’innovation dans les méthodes de stockage de l’énergie, dont les plus prometteuses sont les batteries lithium-ion. Dans le domaine de la production de batteries, l’électrolyte se décompose sur l’électrode pour former l’interphase d’électrolyte solide (SEI). D’une épaisseur d’environ 50 nanomètres, cette couche fragile détermine dans une large mesure l’état de santé et le cycle de vie des cellules de la batterie. Le projet NanoBat, financé par l’UE, s’emploie à développer une boîte à outils contenant des méthodes haute fréquence et ultrarapides qui permettent de tester et de quantifier les processus électriques au niveau de SEI, d’une précision de plusieurs ordres de grandeur supérieure aux techniques disponibles à l’heure actuelle. Les nouvelles techniques amélioreront la production et le test des batteries, procurant ainsi de nombreux avantages aux fabricants et clients. Il s’agit notamment de la réduction des déchets et de la consommation d’énergie ainsi que l’extension de la longévité des batteries qui présentent un risque moindre d’emballement thermique.
Objectif
Sustainable storage of electrical energy is one of this century’s main challenges, and battery production is one of the future key industries with an estimated market potential of 250 Billion Euros by 2025 as stated by the European Commission. We contribute to this by establishing an RF-nanotechnology toolbox for Li-ion batteries and beyond Lithium batteries. The specific focus is on the nanoscale structure of the 10-50 nm thick SEI (solid electrolyte interphase) layer, which is of pivotal importance for battery performance and safety, but which is difficult to characterize and optimize with currently available techniques. The toolbox contains new nanoscale high-frequency GHz methods that are ultra-fast and capable of testing and quantifying the relevant electrical processes at the SEI, several orders of magnitude better than currently available techniques. Nanoscale imaging of the SEI electrical conductivity at high GHz frequencies will be done for the first time, and impedance changes are measured during electrochemical processes, supported by advanced modelling and simulation techniques. Several methods are tested in pilot-lines, including advanced electrochemical impedance spectroscopy and a newly developed self-discharge method that shortens the electrical formation process in battery production from 2 weeks to 10 min. Finally, the new methods will be used for high-throughput incoming quality control in the battery module production at our automotive end users, where 30.000 cells will be tested per day. In summary, we develop a solid basis of GHz-nanotech instrumentation to improve cell production and testing, resulting in major advantages for manufacturers and customers, for instance reduced waste and energy consumption, and longer lasting batteries that are safer with 90% improved thermal runaway. Project results will be disseminated to a large stakeholder group, with technical workshops (e.g. e-car rally) and conferences in nanotech and battery production.
Champ scientifique
Mots‑clés
Programme(s)
Régime de financement
RIA - Research and Innovation actionCoordinateur
4020 LINZ
Autriche