Project description
Quantum technology improves readout of classical data
Classical data is information stored on a hard-drive, CD-ROM or other common digital memory. It can also be associated with other physical systems, such as the structure of biomedical materials. The EU-funded QUARTET project will enable improved computer information readout, pattern recognition and even radar detection using complex quantum resources and detectors. Quantum-enhanced pattern recognition could have remarkable long-term applications in biology and medicine. It has the potential to enable non-invasive analysis of very fragile biological samples or human tissues, and better recognise hidden patterns associated with bacterial growth or cancerous cells. In addition, the creation of a working quantum radar prototype could have major applications for aircraft detection, tracking and other security technology.
Objective
The general aim of this proposal is to exploit quantum information to develop new powerful methods for the retrieval and recognition of classical data from physical systems. More precisely, we aim at showing a substantial quantum-enhancement in several fundamental tasks: (1) the readout of classical data from digital memories (quantum reading); (2) the recognition of classical patterns (quantum pattern recognition); (3) the optical measurement of concentration in fragile biomedical samples (quantum bio-probing); and (4) the microwave detection of target objects (microwave quantum illumination or quantum radar). These objectives are realized starting from the optimization of a general theoretical model at their basis: quantum channel discrimination. This is then developed into technical aspects which directly support our experimental proof-of-principle demonstrations.
Our experimental prototypes could open the way to much more powerful and radically new forms of information and detection technologies, with direct benefit for science and the wider society. Thanks to the superior performances in the low energy regime, quantum reading may increase data-transfer rates and storage capacities of current digital memories by orders of magnitude. Quantum pattern recognition could have remarkable long-term applications in biology and medicine, in terms of non-invasive analysis of very fragile biological samples or human tissues, and better recognizing hidden patterns associated to bacterial growths or cancerous cells. Such results could provide future non-invasive techniques of medical imaging for private and public hospitals. Finally, the realization of a working prototype of a quantum radar may have non-trivial applications for the European security technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- social sciences sociology social issues social inequalities
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radar
- natural sciences computer and information sciences artificial intelligence pattern recognition
- engineering and technology medical engineering diagnostic imaging
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
YO10 5DD York North Yorkshire
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.