Project description
Beyond cellular assays: a hybrid drug discovery tool
The battery of medications for treating neurological diseases is rather limited mainly due to the lack of drug screening models that faithfully recapitulate brain physiology. The EU-funded NEUREKA project has developed a disruptive system that combines computational networks with cultured neurons to model brain diseases. Researchers use nanoelectrodes to control neuronal activity and simulate pathology-related dysfunctions as seen for example in Alzheimer’s disease. Importantly, the technology provides the native brain signals normally absent in cultured neurons, thereby supporting neural circuits in vitro. NEUREKA offers a unique drug screening approach that goes beyond the state of the art and is expected to facilitate the discovery of novel pharmaceuticals against neurological diseases.
Objective
NEUREKA will bring a paradigm shift in drug discovery for neurological diseases, a sector that suffers multiple, repeated failures exacerbating the economical and societal burden of these incurable diseases. It will do so by addressing a crucial shortcoming: the lack of in vitro systems faithfully reproducing brain pathology that enable the functional assessment of candidate compounds at multiple levels: from synapses to neuronal circuits. NEUREKA introduces an innovative, hybrid technology, whereby detailed, computational neuronal networks simulate dysfunction and drive cultured neurons to replicate in-brain disease conditions. Nanoelectrodes mediate the transmission between simulated and biological neurons. Akin to real synapses, nanoelectrodes contact cultured neurons at subcellular locations across the dendritic tree, soma and axonal branches, allowing to control and monitor neural activity with unprecedented accuracy. Biological neuronal responses registered by nanoelectrodes are fed back to simulated neurons, closing the loop and enabling control of activity states across the hybrid population. Complementing molecular deficits already present in culture models of a disease, computational models enable replication of both molecular and physiological deficits of neurodegeneration in vitro. Cultured neurons are driven towards pathological excitability states where deficits emerge, so as to optimize quantification of the impact of drugs, going well beyond standard cellular assays. A proof-of-concept will be provided for Alzheimer’s disease, using human induced pluripotent stem cell (iPSC)-derived neurons exhibiting the pathology. NEUREKA will be used to demonstrate the effect of drug candidates across synaptic, neuronal and network functions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- medical and health sciences basic medicine neurology dementia alzheimer
- medical and health sciences basic medicine pathology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
70 013 IRAKLEIO
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.