European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Symmetries and Entanglement in Quantum Matter

Descripción del proyecto

La búsqueda de simetrías rotas permite extraer información de las fases de materia cuántica

Los sistemas de muchos cuerpos cuánticos en interacción muestran simetrías y contribuyen a conocer mejor los mecanismos internos de un sistema. No obstante, estas simetrías siempre se manifiestan en la física cuántica. El efecto Hall cuántico fraccional ha mostrado estructuras internas que representan un tipo nuevo de ordenación. El objetivo del proyecto financiado con fondos europeos SEQUAM pasa por desarrollar un marco de simetría exhaustivo para estudiar sistemas cuánticos de muchos cuerpos basado en la estructura de su entrelazamiento. El empleo de redes tensoras ofrecerá la posibilidad de estudiar estructuras de simetrías físicas de sistemas cuánticos y su orden de entrelazamiento resultante. Los resultados de SEQUAM permitirán conocer mejor las fases no convencionales que se presentan en la materia cuántica.

Objetivo

Symmetries are at the heart of quantum many-body phenomena in quantum chemistry, condensed matter, and high energy physics. They govern the structure of physical laws, and explain different phases through the mechanism of symmetry breaking. The discovery of novel unconventional phases such as the fractional quantum Hall effect has challenged this view: These phases instead display a global ordering in their entanglement, hindering a characterization in terms of local symmetries.

The goal of my project is to develop a comprehensive symmetry-centered framework for the study of quantum many-body systems across physics, based on the structure of their entanglement. It is placed at the interface between Quantum Information and Quantum Many-Body Physics, and uses the language of Tensor Networks which allows to reconcile locality with global entanglement. Our starting point is the physical symmetry structure of the system of interest. Using Tensor Networks, we move to entanglement space, where we classify the symmetries in the entanglement induced by the physical symmetries, and the way in which the entanglement orders under those symmetries – the entanglement phase. By mapping back to the physical space, we can study the ways in which the entanglement order manifests physically, and obtain a spectrum of powerful analytical, numerical, and experimental probes for unconventional phases. We will apply this framework to a wide range of systems which appear in condensed matter and high energy physics, or are realizable in quantum simulators e.g. with cold gases.

The results of the project will give a unified understanding of unconventional phases, based on physical symmetries and the resulting entanglement order. It will yield their physical manifestations, numerical probes for their detection, and simple ways to realize and probe these models in experimental scenarios, and thus significantly advance our ability to understand, study, and realize complex quantum phases.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

UNIVERSITAT WIEN
Aportación neta de la UEn
€ 1 953 375,00
Dirección
UNIVERSITATSRING 1
1010 Wien
Austria

Ver en el mapa

Región
Ostösterreich Wien Wien
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 953 375,00

Beneficiarios (2)