Project description
Probing ultra-strong light–matter interactions in infrared detectors
Ultra-strong coupling between light and matter refers to a new type of strong interaction where the coupling strength is comparable to the transition frequencies in the system. The EU-funded UNIQUE project plans to study ultra-strong light–matter coupling in new types of optoelectronic semiconductor devices operating in the terahertz and mid-infrared frequency range (3-300 µm). These devices will, for the first time, allow for the experimental observation of intrinsic quantum features of the light-matter coupled states, such as quantum vacuum radiation and quantum-optical squeezing. To achieve ultra-strong coupling, the collective excitation of electrons will be coupled with a metamaterial nano-resonator. This metamaterial detector will be supplied with sensitive read-out schemes that will enable the observation of quantum vacuum radiation and non-classical photon-counting statistics of polaritons.
Objective
In the majority of optoelectronic devices emission and absorption of light are considered as perturbative phenomena. The objective of my project is to explore the ultra-strong light-matter coupling regime in a new type of optoelectronic semiconductor-based devices operating in the THz and MIR frequency range (lambda=3-300m). These devices will allow the first time experimental observation of intrinsically quantum features of the ultra-strong coupling regime, such as quantum vacuum radiation (dynamical Casimir effect) and squeezing of polaritons states. In these devices, generically acting as detectors, the light-matter coupled states (polaritons) will be efficiently converted into electrical signals. The matter excitation is based on the electronic transitions in semiconductor quantum wells, where the light-matter interaction is strongly enhanced owe to collective effects. To achieve the ultra-strong coupling regime, the collective electronic excitation is coupled with metamaterial nano-resonator acting as high frequency inductor-capacitive circuit. In such resonator, very high electric field intensity is achieved into effective volume of sizes comparable with the electron De Broglie wavelength. The photoconductivity of such detectors will be dominated by polaritonassisted fermionic transport. The metamaterial detectors will be supplied with sensitive read-out based on the single-electron transistor concept, which will allow the observation of quantum vacuum radiation as well as the non-classical photo-counting statistics of polaritons. In these device architectures I will also implement the dynamical Coulomb blockade, where the single electron charging energy e/2C becomes comparable with the metamaterial resonator energy w. This effect will be exploited as a disruptive approach to sense the quantum-optical properties of light-matter coupled states by all-electronic means.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.