European Commission logo
English English
CORDIS - EU research results
CORDIS

ASSESSMENT OF ADDITIVE MANUFACTURING LIMITS FOR ECO-DESIGN OPTIMIZATION IN HEAT EXCHANGERS

Project description

Streamlining selective laser melting technology for heat exchangers

Capitalising on the benefits of producing complex and low-volume components, aircraft engine manufacturers have embraced additive manufacturing. The new freedom of design created by selective laser melting (SLM) makes it possible to produce lightweight complex aircraft parts that are durable and highly efficient. The EU-funded AManECO project has been established to address certain challenges related to the use of SLM for the design of heat exchangers. The project will work on improving SLM capability to manufacture thin wall layers with a focus on aerothermal and mechanical performance. Overall, project outcomes will help increase heat exchanger efficiency by 10 %, reduce manufacturing costs by 30 %, and reduce material waste by 15 %.

Objective

Selective Laser Melting (SLM) is key for improved design and production process of aviation parts. Applied to heat exchangers (HX), it could dramatically improve global eco‐efficiency through access to radically new designs and open horizons in terms of shape, weight, efficiency. Nevertheless, some questions need to be solved regarding capability of Additive Manufacturing (AM) to manufacture thin walls, small holes/gaps, low overhang angle, resulting surface roughness and mechanical strength.
AManECO aims to enhance knowledge of metal AM and, specifically, the capability of SLM process to manufacture thin layers and wall thickness with adequate surface finish using AlSi7Mg0.6 and INCO 718 materials. In particular, to investigate aerothermal and mechanical performance of thin walls, to predict them in the design of AM-HX and consequently, be able to optimize the HX´s design process in an Eco-friendly way after knowing the limits of the metal AM technology.
For this purpose, testing samples will be designed and manufactured to characterize in terms of surface properties, pressure resistance and gas tightness evaluation, equivalent stiffness and aerothermal properties. Besides, numerical studies based on FEM and CFD simulations will be done. Then, a representative design of HX based on the initial SOA of AM limitations will be optimized with the gained knowledge. These designs, before and after optimization, will be processed and characterized. Then, a Life Cycle Inventory (LCI) database will be created to evaluate the ECO potential of the innovative HX.
AManECO will enable to:
- Increase efficiency of HX up to 10%.
- Reduce the overall of HX manufacturing costs by 30%.
- Reduce material waste and scraps by 15 % per component.
- Reduce time-to market up to 1 month.
A multidisciplinary consortium, with experts in HX design and AM (TUHH, LORTEK, FIT), samples characterization (CIDETEC, MU-ENG), numerical simulation (EPSILON, TUHH), and life cycle assessment and eco-design (CTME), has been defined.

Coordinator

LORTEK S COOP
Net EU contribution
€ 490 250,00
Address
ARRANOMENDIA KALEA 4 A
20240 Ordizia
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost
€ 490 250,00

Participants (6)