Opis projektu
Ulepszenie technologii selektywnego topienia laserowego dla wymienników ciepła
Aby móc wykorzystać zalety wytwarzania skomplikowanych komponentów w małych ilościach, producenci silników lotniczych chętnie sięgają po obróbkę przyrostową. Selektywne topienie laserowe (ang. selective laser melting, SLM) daje nieznaną wcześniej swobodę projektowania lekkich, złożonych części lotniczych, które są trwałe i mają doskonałe parametry użytkowe. Finansowany przez UE projekt AManECO został zainicjowany w celu rozwiązania pewnych problemów z wykorzystaniem techniki SLM do projektowania wymienników ciepła. W ramach projektu prowadzone będą prace mające poprawić efektywność SLM w wytwarzaniu cienkościennych warstw z naciskiem na ich właściwości aerotermiczne i mechaniczne. Ogólnie rzecz biorąc, prowadzone w projekcie prace pomogą zwiększyć wydajność wymienników ciepła o 10 %, zmniejszyć koszty produkcji o 30 % i ograniczyć ilość odpadów materiałowych o 15 %.
Cel
Selective Laser Melting (SLM) is key for improved design and production process of aviation parts. Applied to heat exchangers (HX), it could dramatically improve global eco‐efficiency through access to radically new designs and open horizons in terms of shape, weight, efficiency. Nevertheless, some questions need to be solved regarding capability of Additive Manufacturing (AM) to manufacture thin walls, small holes/gaps, low overhang angle, resulting surface roughness and mechanical strength.
AManECO aims to enhance knowledge of metal AM and, specifically, the capability of SLM process to manufacture thin layers and wall thickness with adequate surface finish using AlSi7Mg0.6 and INCO 718 materials. In particular, to investigate aerothermal and mechanical performance of thin walls, to predict them in the design of AM-HX and consequently, be able to optimize the HX´s design process in an Eco-friendly way after knowing the limits of the metal AM technology.
For this purpose, testing samples will be designed and manufactured to characterize in terms of surface properties, pressure resistance and gas tightness evaluation, equivalent stiffness and aerothermal properties. Besides, numerical studies based on FEM and CFD simulations will be done. Then, a representative design of HX based on the initial SOA of AM limitations will be optimized with the gained knowledge. These designs, before and after optimization, will be processed and characterized. Then, a Life Cycle Inventory (LCI) database will be created to evaluate the ECO potential of the innovative HX.
AManECO will enable to:
- Increase efficiency of HX up to 10%.
- Reduce the overall of HX manufacturing costs by 30%.
- Reduce material waste and scraps by 15 % per component.
- Reduce time-to market up to 1 month.
A multidisciplinary consortium, with experts in HX design and AM (TUHH, LORTEK, FIT), samples characterization (CIDETEC, MU-ENG), numerical simulation (EPSILON, TUHH), and life cycle assessment and eco-design (CTME), has been defined.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
- nauki przyrodniczeinformatykabazy danych
- inżynieria i technologiaprzemysł maszynowyinżynieria produkcjiobróbka przyrostowa
- nauki przyrodniczenauki fizyczneoptykafizyka laserów
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Słowa kluczowe
Program(-y)
Zaproszenie do składania wniosków
Zobacz inne projekty w ramach tego zaproszeniaSystem finansowania
RIA - Research and Innovation actionKoordynator
20240 Ordizia
Hiszpania