Project description
Geological structures and processes inspire novel materials for energy and the environment
Metastable materials are materials that are not entirely stable but relatively so, transforming to another state over a long period of time. They are ubiquitous in nature and in the lab and, given their slightly 'excited' nature relative to ground state stable materials, they often have superior properties. They have tremendous potential for next-generation materials in fields from semiconductors to pharmaceuticals to steel, but detailed understanding required for rational design is missing. The EU-funded Genesis project is taking ideas from nature and formations of solids during geological processes to produce functional inorganic solids as nanoparticles. Not only is the team developing innovative nanoscaled metastable solids that could yield exciting new properties, but it is doing so under mild conditions supporting more sustainable synthetic chemistry.
Objective
Constant search of new solids is required to advance our knowledge in materials science, and then to stimulate progresses in fields like energy and environment. Genesis aims at expanding the collection of functional inorganic solids as nanoparticles by rational exploratory synthesis. The pivotal idea is to draw inspiration from the processes of solid formation encountered in natural geological processes, in order to set a framework of synthesis conditions prone to yield new nanoscaled solids.
I focus on kinetically stabilized, metastable solids, which yield novel, sometimes surprising properties prone to deliver new functions. However, conventional solid-state syntheses use high temperatures that yield thermodynamic products, hence hampering the synthesis of metastable inorganic solids. This obstacle is even more significant when the solids possess complex structures, as is the case of non-oxides made of transition metals and boron, silicon or phosphorus. The known members of these families are made of covalent bonds that bring unique electrocatalytic properties. This motivates the search of ternary solids joining these elements. Their quest is a synthetic challenge that I will address by the discovery of new metastable covalent solids.
To do so, I will set an original inorganic synthesis methodology by taking inspiration from the processes of crystallization of gems in molten salts, of lavas at high rate and of metamorphic rocks at high pressures to merge nanosciences and solid-state chemistry. Genesis will operate at the crossroad of three pillars: use of the surface energy of nanoparticles to stabilize solids that would be metastable in their extended form; establishment of liquid-phase syntheses at 300-1000 C in mild conditions; use of high-pressure chemistry to stabilize new solids. Within this frame, I will develop new methods to screen in situ the reaction pathways and I will trigger a new reactivity between boron, silicon, phosphorus and nanoparticles.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.