Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Dynamic Network Reconstruction of Human Perceptual and Reward Learning via Multimodal Data Fusion

Project description

How the brain learns to optimize human decision making

Training and experience can lead to long-lasting improvements in our ability to make decisions across different domains. For example, consider learning how to inspect a noisy X-ray image to issue an accurate diagnosis or how to choose between different stock options to maximize financial returns. These seemingly disparate learning scenarios have so far been studied in isolation. The aim of the EU-funded DyNeRfusion project is to develop a unified framework for integrating these different lines of research and characterize the neurobiological processes underlying learning and decision making in the human brain. To do so, it will develop state-of-the-art brain imaging (fusion of EEG and fMRI), by leveraging novel machine-learning techniques and mathematical modeling of human behavior. The project will offer a comprehensive account of how our brains learn to optimize decisions, extending beyond what could be inferred with more traditional brain imaging techniques.

Objective

Training and experience can lead to long-lasting improvements in our ability to make decisions based on either ambiguous sensory or probabilistic information (e.g. learning to diagnose a noisy x-ray image or betting on the stock market). These two processes are referred to as perceptual and probabilistic/reward learning, respectively. Despite considerable efforts to uncover the neural systems involved in these processes, perceptual and reward learning have largely been studied in separate lines of research using divergent learning mechanisms. The primary aim of this proposal is to develop a unified framework for integrating these lines of research and understand the extent to which they share a common computational and neurobiological basis. Specifically, we will test the proposition that both the perceptual and reward systems could be understood in a common framework of “reward maximization”, whereby a domain-general reinforcement-guided learning mechanism – based on separate prediction error representations – facilitates future actions and adaptive behavior. To offer a comprehensive spatiotemporal characterization of the relevant networks and their computational principles we will adopt a state-of-the-art multimodal neuroimaging approach to fuse simultaneously-acquired EEG and fMRI data, via machine-learning-inspired multivariate single-trial analysis techniques and computational modelling. The project’s ultimate goal is to empower a level of neuronal and mechanistic understanding that extends beyond what could be inferred with each of these modalities in isolation. We will achieve this goal by exploiting endogenous trial-by-trial electrophysiological variability to build parametric fMRI predictors that can offer additional explanatory power than what can already be achieved by stimulus- or behaviorally-derived predictors, allowing us to go over and beyond what has been reported previously in the literature.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-COG

See all projects funded under this call

Host institution

UNIVERSITY OF GLASGOW
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 996 043,00
Address
UNIVERSITY AVENUE
G12 8QQ Glasgow
United Kingdom

See on map

Region
Scotland West Central Scotland Glasgow City
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 996 043,00

Beneficiaries (1)

My booklet 0 0